Interaction of Water Vapor with the Surfaces of Imidazolium-Based Ionic Liquid Nanoparticles and Thin Films

Amanda C. MacMillan, Theresa M. McIntire, J. Alfredo Freites, Douglas J. Tobias, and Sergey A. Nizkorodov*

Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States

ABSTRACT: Understanding the interactions of humid air with ionic liquids (ILs) is critical for predicting how their physicochemical properties are affected by water. Using experimental and theoretical techniques, water vapor’s interaction with aerosolized nanoparticles and thin films of [C2MIM][Cl] and [C2MIM][BF4] was studied. Solutions were electrosprayed to produce dry particles. Particles’ hygroscopic growth was quantified using tandem nanodifferential mobility analysis as a function of relative humidity (RH). This is the first report of the interaction of water with aerosolized IL nanoparticles. The particles’ small size allows true IL–water vapor equilibrium achieved quickly. Growth curves for both ILs show steady water uptake with increasing RH. Water vapor uptake by IL thin films was also examined using ATR-FTIR spectroscopy. Both experimental methods show [C2MIM][Cl] absorbs more water vapor than [C2MIM][BF4] over the entire RH range. Water molar fractions, calculated from growth curves, agreed well with those estimated from ATR-FTIR data. MD simulations, used to model IL–water interactions, revealed strong interactions between [Cl−] and water and considerably weaker interactions between [BF4−] and water. Widths and position of O−H stretching vibrations from MD simulations qualitatively reproduced ATR-FTIR results. These experimental and theoretical data provide a comprehensive picture of the behavior of absorbed water in ILs.

INTRODUCTION

Ionic liquids (ILs) are salts, typically composed of organic cations and inorganic anions, with melting points around or below 100 °C. They represent a large class of molecules that have unique and widely tunable physical and chemical properties.1−3 For example, there is a significant interest in the use of ILs in green chemistry,2,4,5 due to their negligible vapor pressure at room temperature,6 and for many other applications including solvents in synthesis and catalysis,1,6 chemical extraction,1,2,5 and fuel cells.7 Physical properties such as conductivity, viscosity, density, and surface tension of ILs are known to depend on the presence of water, both adsorbed and absorbed.3,8 Water is ubiquitous in the environment, and hygroscopic ILs such as those with imidazolium-based cations can uptake significant amounts of water vapor from ambient air, which alters their physical and chemical properties.1,3 Thus, quantification of water uptake by hygroscopic ILs and understanding how the presence of water affects the nature of the ion−ion and ion−water interactions are critical for use of ILs in future applications.8−14

Numerous experimental and theoretical studies have investigated the interaction of imidazolium-based ILs with water.3,8−35 It is understood that both the cation and the anion have an effect on how ILs interact with water, with the anion having a stronger effect.3,17,19 Early experimental work by Seddon et al. investigated the miscibility of water with ILs containing 1-n-alkyl-3-methylimidazolium ([CnMIM]+, n = number of carbons on the linear alkyl chain) cations and various anions at room temperature.3 It was determined that, regardless of the alkyl chain length, all halide anions were fully soluble in water and all hexafluorophosphate ([PF6−]) anions were insoluble.3 However, alkyl chain length did have an effect on water miscibility of [CnMIM]+-based ILs with tetrafluoroborate ([BF4−]) anions; for chain lengths of n = 2 or 4, the ILs were fully miscible, but for n > 4, the ILs formed biphase systems.3

Cammarata et al. performed early attenuated total reflection (ATR) infrared (IR) studies on the molecular states of water
absorbed from the atmosphere in ILs under ambient conditions. For 1-butyl-3-methylimidazolium tetrafluoroborate ([C1MIM][BF4]), water interacted mainly with the anions at low water content to create stable hydrogen bonds (H-bonds) to two [BF4−] anions, via [F−···H−O−H−F−] bridges. The IR spectra showed two bands at 3640 and 3560 cm−1 characteristic of the water forming H-bonds to the anions; a predominance of these complexes occurred at χw (the molar fraction of water in the IL−water mixture) < 0.2, while the formation of H-bonded water clusters was favored at χw > 0.3. However, for more basic anions, such as acetate, one broad band around 3400 cm−1 indicated the preference to form water−water aggregates. Similarly, more recent ATR−Fourier transform infrared (FTIR) and NMR studies involving the interaction of 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2MIM][BF4]) and water molecules also observed a significant change in the state of water molecules in [C2MIM][BF4] at χw ≈ 0.3. In addition, large-angle X-ray scattering experiments showed that as the concentration of water increased in [C2MIM][BF4] solutions, stronger interactions between the C2 on the ethyl imidazolium ring and the [BF4−] anion occur, with a concomitant weakening of interactions at C4 and C5 (Figure 1a).

![Figure 1. Structures of ILs used in this study: (a) 1-ethyl-3-methylimidazolium ([C2MIM]+) cations paired with either a chloride ([Cl−]) or tetrafluoroborate ([BF4−]) anion.](image)

Early molecular dynamics (MD) simulations by Hanke et al. on single water molecules and 1,3-dimethylimidazolium chloride ([Cl][Cl]) found that water interacts predominantly with [Cl−] in the solution. The same group investigated [C2MIM][Cl]−water mixtures and observed that at low water concentrations water is either isolated or contained in small water clusters, but at higher concentrations the water molecules form a continuous network. They also found that at higher water concentrations the properties of the IL−water mixture were different from the pure IL. Work by Saha and Hamaguchi using single crystal X-ray diffraction and Raman spectroscopy showed that water has the ability to alter the conformation of the n-butylonitrile side chain in 1-butylonitrile-3-methylimidazolium halides and that water participates in a H-bonding network with the anions. This H-bonding network displaces the anion’s position, which disturbs the arrangement and stable molecular structure of the IL.

NMR experiments carried out by Mele et al. gave direct evidence of the existence of tight ion pairs in the pure IL, even with the presence of small amounts of water. The IL structure is disturbed with a lower degree of ring stacking by cation-mediated H-bonds between water and the imidazolium ion protons. MD simulations performed by Moreno et al. on [C2MIM][BF4]−water mixtures from 0 to 0.5χw indicated that at low χw the water molecules are selectively coordinated to both the cation and anion, and the ionic network is unperturbed. However, at higher χw they observed the formation of whole water clusters that perturbed the ionic network. Additionally, they found water clusters formed almost entirely from linear chains of H-bonded molecules. Far-IR measurements and density functional calculations by the Ludwig group correlated cation−anion cohesive energies in imidazolium-based ILs; the intermolecular stretching modes shifted to higher energies as the anion ionic strength increased. Recently, cohesive energies and the electron density of H-bonding interactions for imidazolium-based ILs as a function of anion identity were studied by Gao et al. Their results showed that water dissolved in ILs weakened the electron density of the C−H···Y bond between the cation and anion. Finally, Dang and Wick performed MD simulations to calculate the potentials of mean force for transporting a water molecule across the air−IL interface in [C2MIM][BF4] and [C2MIM][PF6]. They found that water prefers bulk solvation with no evidence for interfacial energy minima.

While numerous studies of water and ILs have been conducted, few studies have attempted to quantify the amount of water vapor that ILs can absorb from the atmosphere. Previous studies were performed on bulk quantities of ILs. However, there are kinetic limitations associated with studying large quantities of ILs, often taking several hours or longer for bulk ILs to reach equilibrium with water vapor. Work by Cuadrado-Prado et al. studied the change in mass of 1 mL volumes (initial masses: ~1−2 g) of imidazolium-based ILs with [BF4−] and alkyl sulfate anions after exposure to varying levels of relative humidity (RH). They found that the mass of IL film increased as the RH increased, though it was incorrectly concluded that water was only adsorbed on the surface, creating a thin film. At 100% RH, it took from 80 to 100 h for the ILs to reach an equilibrium with the atmospheric water vapor and become completely saturated (without stirring). In a similar study, Di Francesco et al. examined the kinetics of water vapor uptake by several ILs at two RH levels, 43% and 81% RH, using gravimetric analysis on initial IL volumes of 2 mL. The results showed that the more hydrophilic ILs absorbed more water vapor compared to the more hydrophobic ILs. Their study also took a long time for the ILs to either reach or begin to approach equilibrium with exposed water vapor; anywhere from 20 to 60+ h at 43% RH. At 81% RH, equilibrium was reached for most of the ILs after 20 h, while [C2MIM][BF4] took almost 60 h. For both RH levels, they found that [C2MIM][BF4] took the longest time to reach equilibrium and absorbed the most amount of water, concluding that it was the most hydrophilic of the ILs in their study.

The kinetic limitations associated with large quantities of IL in previous studies of water vapor absorption by imidazolium-based ILs can be circumvented by studying water uptake by IL nanoparticles (a few tens of nanometers in diameter) or thin films (a few micrometers in thickness). Hygroscopic nanoparticles generally achieve equilibrium with water vapor in a fraction of a second. For the first time, we report on the interaction of [C2MIM][Cl] and [C2MIM][BF4] IL nanoparticles with water absorbed from the vapor phase using hygroscopicity measurements. By aerosolizing ILs and comparing their dry sizes to their wet sizes, we can quantitatively determine the amount of water that particles can take up from humidified air over a broad range of RH. In addition, ATR-FTIR spectra of thin films of [C2MIM][Cl] and [C2MIM][BF4] are measured, and the C−H and O−H band positions and intensities are determined as a function of RH in order to provide information about the nature of interactions between ILs and water molecules. We also carry out MD simulations of equimolar IL−water mixtures to aid in the interpretation of experimental data. These experimental and theoretical data, in combination, provide a comprehensive picture of the behavior of absorbed water in ILs.
ILs Used in the Study. The sources and purities of the ILs were as follows: 1-ethyl-3-methylimidazolium chloride ([C2MIM][Cl]) (Aldrich, 98%) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2MIM][BF4]) (Aldrich, 98%). Their chemical structures are shown in Figure 1. Every attempt was made to keep the ILs as water-free as possible. All samples were prepared in a drybox that was continuously purged with dry air. All chemicals were sealed with a paraffin film and stored in a desiccator when not in use. [C2MIM][BF4] was protected from light by wrapping glassware in foil and stored in dark, amber bottles to prevent potential photodegradation.

IL Purification. ILs were purified and dried before all experiments using standard literature techniques.1,38−40 [C2MIM][Cl] was washed several times with ethyl acetate (Acros Organics, 99.5% Spectroscopy grade) and vacuum-dried at ~363 K for 48 h.38−40 [C2MIM][BF4] was stirred with activated carbon (Sigma-Aldrich, 20−40 mesh) for 12 h, filtered with a short column of neutral, activated alumina (Fisher, 60−325 mesh), and vacuum-dried at ~343 K for 48 h.40

1H NMR Spectroscopy. IL purities were verified before and after purification and drying with 1H NMR spectroscopy, using a Bruker DRX500 equipped with a TCI cryoprobe at 298 K using acetone-d6 (Cambridge Isotope Laboratories, Inc.; D, 99.9%, with 1% v/v TMS) as the solvent.

IL Water Content. After vacuum drying, the amount of water left in the ILs was measured using a Karl Fischer titrator (Mettler Toledo, Model DL39) with analyte hydrazine coulomat A and catholyte hydrazine coulomat CG (both from Fluka). For [C2MIM][Cl], a solution was prepared by diluting ~0.6 g of the IL into ~1 mL of anhydrous methanol (MeOH). Anhydrous MeOH was prepared by sparging with argon and then dried with columns containing Q-Sep (supported redox catalyst to remove oxygen) and molecular sieves. For [C2MIM][BF4], neat samples were examined. The water contents of [C2MIM][Cl] and [C2MIM][BF4], averaged over 3−4 measurements of the solutions and neat samples, were ~390 and ~120 ppm, respectively, by mass. The water content of the anhydrous MeOH solvent was ~180 ppm using Karl Fischer titration.

IL Nanoparticle Generation. IL solutions used for electrospray (ES) were prepared by dilution of the purified and dried IL, as described above, in anhydrous MeOH to reach a final solution concentration of ~0.5−0.6 g L−1. All solutions were stored in dark, amber vials that were closed with septum caps, sealed with a paraffin film, and stored in a desiccator when not in use. Solutions were electrosprayed at 295 K using a custom-built ES aerosol generator (EAG).41,42 Solutions were withdrawn from the vial directly using a syringe (Hamilton GT, 1 mL) to avoid water uptake from the atmosphere. A syringe pump (Model 780100, KD Scientific), with a flow rate of 0.15 mL h−1, was used to push the solutions through a 5 cm long, quartz capillary tube (inner diameter (i.d.) 100 μm, outer diameter (o.d.) 360 μm). The capillary was housed in a 5 cm3 chamber that was equipped with glass windows, a microscope objective, and a CCD camera for viewing the spray (Figure 2a,b). A stable cone-jet (Taylor cone) of the solution was generated by applying a ~3 kV potential directly to the stainless steel union, which connected the capillary and syringe. The capillary tip was positioned ~7−8 mm away from a bipolar neutralizer (either 85Kr 10 mCi TSI Model 3077A or 210Po 10 mCi NRD Model P-2021). Nanoparticles were carried with a flow of dry air (~1% RH), at a flow rate of ~0.8 SLM (standard liters per minute), toward the electrically grounded neutralizer opening. The ES was operated continuously and generated a dry, polydisperse number concentration of particles on the order of 105 particles cm−3, with sizes ranging from ~5 to ~55 nm (Figure 2c). The narrow size distribution of particles was selected from this polydisperse population of particles (Figure 2d). The particles’ sizes in this study are considerably larger than the 1−7 nm IL nanodroplets investigated by de la Mora and co-workers, which were also generated by an ES method.43−46 The differences in the observed particles’ size distributions were likely due to the significantly different EAG operation conditions. The IL particles produced in the de la Mora experiments were not neutralized immediately after the ES process, making them more susceptible to Coulomb fission. Prompt neutralization in the present experiments effectively removed charge from the primary droplets to prevent them from fissioning into smaller progeny droplets, resulting in larger residue particles.

IL Hygroscopic Growth Measurements. IL nanoparticle hygroscopicity was determined using tandem nanodifferential mobility analysis (TDMA).47 The experimental schematic is shown in Figure 2a. Under dry conditions (~1% RH), a narrow size distribution of nanoparticles was selected by applying a fixed negative dc potential (~−320 V) to the first differential mobility analyzer (DMA1, TSI Model 3085). Dry IL particles with mobility-equivalent diameters centered at 26.9 ± 0.1 nm were selected with geometric standard deviations of ~1.06 (the stated
D2O solutions, as described in Smith et al., were prepared using water, or H2O/D2O solutions. The size of 26.9 nm was specifically chosen because it neared the maximum of the full size distribution for the particles generated by the EAG, thus maximizing the particle count (Figure 2b,c) and minimizing the variation in the particle number concentrations across the DMA1 selection window. While the initial particle size selected in this work was fixed, it would be interesting to conduct similar experiments with variable particle sizes in the future, especially in the sub-10 nm size range, where significant size effects on hygroscopicity can be expected.

Dry IL nanoparticles were then exposed to humidified air by sending them through a Nafion tube (PermaPure). Controlled humid air flowing around the Nafion tube provided the source of RH. RH was maintained by mixing different proportions of wet (RH >99%) and dry (RH <1%) air. RH and temperature were monitored using Vaisala HMP237 RH probes and a LabVIEW program. The probe humidity accuracy was ±2% RH (0–90% RH) and ±3% RH (90–100% RH), while the precision was about ±0.1% RH. Each probe was calibrated by taking measurements over saturated solutions of MgCl2, NaCl, and K2SO4 with a second- or third-order polynomial fit used to interpolate the dependence of the probe response on RH. After particles exited the humidified region, a second DMA (DMA2, TSI Model 3085) was used to measure the particle size distribution of the wet particle size. DMA2 was operated in a scanning mobility particle sizer (SMPS) mode, wherein the potential applied to the central rod was scanned using an electrostatic classifier (TSI Model 3080) controlled by TSI Aerosol Instrument Manager software (version 9.0). A condensation particle counter (CPC, TSI Model 3025A) was used to detect particles from either DMA.

ATR Crystals

Zinc selenide (ZnSe) ATR crystals (80 mm × 10 mm × 4 mm, Pike Technologies or Balboa Scientific), set up for 10 reflections along the length of the crystal, were used as received. Prior to each use, the ATR crystals were cleaned by sequential sonication in ethanol (EMD, OmniSolv, 99.96%). IL–water or IL–H2O/D2O solutions were recorded under dry RH conditions in the ATR cell.

MD Simulations

The simulation systems consisted of S12 ([C2MIM]+), S12 anions ([Cl]− or [BF4]−), and S12 water molecules. Initially, ions and water molecules were placed on a cubic lattice and subjected to 200 steps of conjugate-gradient energy minimization, 2 ns MD simulation at constant volume and temperature (373 K), and 4 ns MD simulation at constant pressure (500 bar) and temperature (373 K). The final segments of the [C2MIM][Cl] and [C2MIM][BF4] trajectories were run at a constant pressure of 1 bar and temperature of 373 K for 31.6 and 26 ns, respectively. Simulations were performed using the NAMD 2.8b1 software package. The force field of de Andrade et al. was used for the [C2MIM]+ and [BF4]− ions, the force field of Beglov and Roux was used for [Cl]−, and the SPC/E model was used for water. The smooth particle mesh Ewald method was used to calculate electrostatic interactions. Short-range real-space interactions were cut off at 11 Å, employing a switching function. A reversible multiple time-step algorithm was employed to integrate the equations of motion with a time step of 2 fs for electrostatic forces, 1 fs for short-range nonbonded forces, and 1 fs for bonded forces. Snapshots were saved at 1 ps intervals for detailed analysis. All bond lengths involving hydrogen atoms were held fixed using the SHAKE and SETTLE algorithms. A Langevin dynamics scheme was used for temperature control, and a Nose–Hoover–Langevin piston was used for pressure control. Molecular graphics and trajectory analyses were performed using VMD 1.92 over the last 10 ns of each trajectory. The electric field and frequency distribution calculations were performed using the methods described by Smith et al.

RESULTS AND DISCUSSION

Hygroscopic Growth of IL Nanoparticles. The measured hygroscopic growth curves (from ~0 to 92% RH) for [C2MIM][Cl] and [C2MIM][BF4] nanoparticles with initial mobility-equivalent diameters of 26.9 ± 0.1 nm are shown in Figure 3. Growth curves were obtained by plotting the normalized growth factor (GF) as a function of RH (eq 1)
where \(d_{\text{m,wet}}(\text{RH}) \) is the mobility-equivalent diameter of the particles in equilibrium with water vapor at a given RH and \(d_{\text{m,dry}} \) is the mobility-equivalent diameter of the particles under dry conditions. Growth curves were constructed from a large number of separate experiments, with each experimental run typically spanning 10–30% RH units and taking about 1 day to complete. All available GF values were then averaged into 1 and 3% RH bins for \([\text{C}_2\text{MIM}][\text{Cl}]\) and \([\text{C}_2\text{MIM}][\text{BF}_4] \), respectively, with each bin typically containing ≥12 measurements from several independent experimental runs. The 95% confidence intervals in Figure 3 illustrate the degree of reproducibility of these measurements. For both IL growth curves, the data become less reproducible at RH values >85% due to the high sensitivity of RH measurements. For both IL growth curves, the data become less reproducible at RH values >85% due to the high sensitivity of RH measurements.

The nanoparticles were exposed to RH for a period of a few seconds in these experiments. To ensure equilibrium was reached on this time scale, additional measurements were performed wherein the \([\text{C}_2\text{MIM}][\text{Cl}]\) and \([\text{C}_2\text{MIM}][\text{BF}_4] \) nanoparticles were exposed to RH for a longer time of ~70 s. Increasing the interaction time did not change the GF values, suggesting that equilibrium was established after only a few seconds of exposure. The rapid establishment of equilibrium with water is a key advantage of the nanoparticle hygroscopic growth mechanism. The average GF values for \([\text{C}_2\text{MIM}][\text{BF}_4] \) are slightly lower than 1 at RH <20%; however, the error bars encompass the GF = 1.00 value.

In contrast to the smooth increase in GF with RH for the IL nanoparticles, hygroscopic growth curves of typical inorganic, ionic compounds have well-defined deliquescence phase transitions that manifest themselves as an abrupt change in the GF at a certain RH value. For example, \(\text{NaCl} \) and \((\text{NH}_4)_2\text{SO}_4\) deliquescence around ~75% and ~80% RH, respectively. No evidence for phase transitions was observed for either IL in this study (Figure 3). The absence of a phase transition for \([\text{C}_2\text{MIM}][\text{Cl}]\) is surprising, considering that it is a solid at room temperature. If a water vapor induced solid-to-liquid phase transition does occur in \([\text{C}_2\text{MIM}][\text{Cl}]\), it must do so without a significant change in the particle size. The smooth increase in the GF with RH is more reminiscent of the behavior of particles composed of hygroscopic liquids. For example, the growth curve for \(\text{H}_2\text{SO}_4\) particles, with \(d_{\text{m,dry}} = \sim 30 \) nm, depicts a smooth increase in wet particle size as RH increases, with a GF of ~1.6 at 80% RH.

Although the imidazolium ILs are regarded as hygroscopic, their GFs are actually small in comparison with inorganic salts. For example, Biskos et al. performed systematic measurements of GFs of pure \(\text{NaCl} \) nanoparticles of different sizes. At 80% RH, \(\text{NaCl} \) particles with \(d_{\text{m,dry}} = 30 \) nm had a larger GF of 1.60 ± 0.01 compared to 1.26 ± 0.01 for \([\text{C}_2\text{MIM}][\text{Cl}]\) and 1.08 ± 0.01 for \([\text{C}_2\text{MIM}][\text{BF}_4] \). In a separate study, Biskos et al. examined the hygroscopicity of pure \((\text{NH}_4)_2\text{SO}_4\) particles with \(d_{\text{m,dry}} \) values of 20 and 40 nm. At 80% RH, the 20 and 40 nm \((\text{NH}_4)_2\text{SO}_4\) particles had GFs of ~1.40, well in excess of the corresponding GF values of the ILs shown in Figure 3.

Figure 3. Hygroscopic growth curve of mobility-equivalent diameter selected 26.9 ± 0.1 nm particles of \([\text{C}_2\text{MIM}][\text{Cl}]\) (circles) and \([\text{C}_2\text{MIM}][\text{BF}_4] \) (triangles). Both ILs undergo a gradual increase in growth factor (GF) as the RH is increased. \([\text{C}_2\text{MIM}][\text{Cl}]\) has a larger GF compared to \([\text{C}_2\text{MIM}][\text{BF}_4] \) and thus takes up more water.

ATR-FTIR Spectra of ILs. The IR spectra of purified, dry \([\text{C}_2\text{MIM}][\text{Cl}]\) and \([\text{C}_2\text{MIM}][\text{BF}_4] \) on ZnSe ATR crystals are shown in Figures 4a and 5a, respectively. The spectra are calculated as \(-\log(S/S_0)\), where \(S_0 \) is the IR beam intensity penetrating through the clean ZnSe ATR crystal and \(S \) is the beam intensity penetrating through the crystal coated with a thin film of dry IL. The spectra are consistent with previous IR studies of these ILs. Spectral bands in the region from 3200 to 3000 cm\(^{-1}\) are attributed to the coupled aromatic ring C–H stretching vibrations of the imidazolium hydrogen atoms, while those between 3000 and 2850 cm\(^{-1}\) can be assigned to the aliphatic C–H stretches of the \(\text{CH}_2 \) and \(\text{CH}_3 \) groups of the ethyl chain and of the \(\text{CH}_3 \) group bonded directly to the \([\text{C}_2\text{MIM}]^+ \) ring. In the spectrum of the dry \([\text{C}_2\text{MIM}][\text{Cl}]\) salt (Figure 4a), the band at ca. 3048 cm\(^{-1}\) is the so-called “[Cl]” interaction band, characteristic of stretching vibrations of C–H or
C5—H bonds interacting with the [Cl$^-$] anion. The dry [C$_2$MIM][Cl] spectrum (Figure 5a) exhibits similar C—H stretching bands at 3165 and 3123 cm$^{-1}$ attributed to bonding of [BF$_4^-$] with C4—H (or C5—H) and C2—H, respectively. Prominent imidazolium ring stretching modes are seen at 1572 and 1172 cm$^{-1}$ for [C$_2$MIM][Cl] and 1576 and 1171 cm$^{-1}$ for [C$_2$MIM][BF$_4$]. Stretching modes of the [BF$_4^-$] anion (Figure 5a) are the sharp peaks around 1286 cm$^{-1}$ and at 755 cm$^{-1}$ and the broad peak centered at ca. 1070 cm$^{-1}$. Figures 4b and 5b show the IR spectra of [C$_2$MIM][Cl] and [C$_2$MIM][BF$_4$], respectively, after exposure to water vapor at various levels of RH. The extent of water uptake was monitored using ATR-FTIR by exposure of [C$_2$MIM][Cl] and [C$_2$MIM][BF$_4$] thin films to water vapor in the sealed ATR cell at different levels of RH at 295 K. After each RH adjustment, spectra were collected until the band intensities stopped changing to ensure that equilibrium was attained. It typically took ~20 min for the system to equilibrate. The spectra of the corresponding dry IL films were subtracted to emphasize changes induced by the uptake of water vapor. Note that this subtraction does not fully eliminate the bands attributable to IL vibrations because the refractive index of the film changes upon water uptake, thus affecting the penetration depth of the evanescent wave. The stronger bands that grow in the spectra are due to water vibrations. The growth of weaker bands is from an increase in the effective amount of material probed by the IR beam.

For [C$_2$MIM][Cl], uptake of water vapor produces a broad O—H peak centered at 3378 cm$^{-1}$ (Figure 4b). Other prominent feature from water are recognized as the bending band at 1637 cm$^{-1}$ and a broad band at ~2109 cm$^{-1}$ assigned to a combination of the bending mode and a far-IR band associated with a librational motion of sterically hindered water molecules (Figure 4b). As illustrated in Figure 4b, the intensity of these bands increases concomitantly with the increase in RH from the added water vapor. The slightly red-shifted [C$_2$MIM$^+$] ring bands (at 1568 and 1167 cm$^{-1}$) and blue-shifted aromatic C—H stretching bands also increase with RH, though this increase is likely due to the change in the IR beam penetration depth mentioned above.

Compared to [C$_2$MIM][Cl] (Figure 4b), the interaction of water vapor with [C$_2$MIM][BF$_4$] (Figure 5b) leads to very different IR spectra in the O—H stretching region. At low RH, there are two well-resolved bands, which can be assigned as the ν_3 asymmetric stretch at 3640 cm$^{-1}$ and the ν_1 symmetric stretch at 3562 cm$^{-1}$ of a water molecule that is H-bonded to two [BF$_4^-$] anions, as suggested previously. As the RH is increased to ~90% RH, the intensities of the ν_3 and ν_1 O—H stretches increase and the positions shift to ~3625 and ~3568 cm$^{-1}$, respectively. A “liquid-like” water peak at 3454 cm$^{-1}$ and a shoulder at 3270 cm$^{-1}$ also appear and grow, indicative of
formation of water aggregates. At higher RHs, there is also an increase in the ring bands associated with the \([\text{C}_2\text{MIM}^+]\) cation (at 1576 and 1171 cm\(^{-1}\)).

The O–H stretching region is sensitive to H-bonding and can offer insight into structural information on IL–water interactions. However, a strong coupling between the \(\nu_1\) asymmetric stretch and \(\nu_3\) symmetric stretches in water complicates interpretation of the spectrum and makes comparison with results from MD simulations difficult. To produce spectra that were free of such coupling effects, ATR-FTIR spectra of ILs mixed with either pure water or a mixture of ultrapure water in excess \(\text{D}_2\text{O}\) (\(\text{H}_2\text{O}/\text{D}_2\text{O}\), consisting primarily of \(\text{D}_2\text{O}\) and HOD molecules, were compared. The IR spectra of 1:1 water and \(\text{H}_2\text{O}/\text{D}_2\text{O}\) solutions of \([\text{C}_2\text{MIM}]\)[Cl] and \([\text{C}_2\text{MIM}]\)[BF\(_4\)] are shown in Figures 4c and 5c, respectively. We note that for the solution of \([\text{C}_2\text{MIM}]\)[Cl] in water the most prominent peak is a broad O–H stretch at \(\sim3380\) cm\(^{-1}\), identical to the band observed in the IL film exposed to water vapor (Figure 4b). Therefore, intentional mixing of \([\text{C}_2\text{MIM}]\)[Cl] and water produces the same type of IL–water solution as \([\text{C}_2\text{MIM}]\)[Cl] absorbing water vapor from ambient air.

For the \([\text{C}_2\text{MIM}]\)[Cl]–\(\text{H}_2\text{O}/\text{D}_2\text{O}\) mixture, the O–D stretches of HOD and \(\text{D}_2\text{O}\) appear around 2517 cm\(^{-1}\). The weaker band at \(\sim3400\) cm\(^{-1}\) corresponds to the decoupled O–H stretch in the \([\text{C}_2\text{MIM}]\)[Cl]–\(\text{H}_2\text{O}/\text{D}_2\text{O}\) mixture. The significant red-shift relative to gas-phase HOD (3707 cm\(^{-1}\)) and the width of this band are consistent with a strong H-bonding interaction, most likely with the [Cl\(^-\)] anion (although interaction with other water molecules cannot be ruled out based on the spectrum). In free HOD–[Cl\(^-\)] complexes, the O–H stretch is even more red-shifted relative to gas-phase HOD (down to 3156 cm\(^{-1}\)).

The smaller red-shift observed in the IL suggests that the strength of the interaction between water and [Cl\(^-\)] is subdued (Figure 4c).

In the case of the \([\text{C}_2\text{MIM}]\)[BF\(_4\)]–water solution, there are two discernible O–H stretches seen in Figure 5c, attributed to the \(\nu_3\) asymmetric band at \(\sim3640\) cm\(^{-1}\) and \(\nu_1\) symmetric band at \(\sim3561\) cm\(^{-1}\). The bands are identical in appearance to the corresponding bands in the IL film exposed to water vapor. In the \([\text{C}_2\text{MIM}]\)[BF\(_4\)]–\(\text{H}_2\text{O}/\text{D}_2\text{O}\) mixture, the decoupled O–H stretch from HOD appears at 3601 cm\(^{-1}\) and the \(\nu_1\) and \(\nu_3\) bands of the \(\text{D}_2\text{O}\) molecules shift to \(\sim2699\) and \(\sim2605\) cm\(^{-1}\), respectively. The narrow width and relatively high vibrational frequency of the decoupled O–H stretch confirm the previous suggestion that water molecules in \([\text{C}_2\text{MIM}]\)[BF\(_4\)] tend to be isolated from each other and interact primarily with the IL components.

The presence of water indirectly affects the C–H stretching modes in the cation, and this effect is seen in Figures 4c and 5c. The C–H stretching bands in \([\text{C}_2\text{MIM}]\)[Cl] (Figure 4c) are blue-shifted from the corresponding bands in the dry IL (Figure 4a). This blue-shift reflects weakened interactions between [Cl\(^-\)] and the cation. This effect is much smaller in \([\text{C}_2\text{MIM}]\)[BF\(_4\)]; the aromatic C–H stretching bands at \(\sim3166\) and \(\sim3123\) cm\(^{-1}\) for both the water and \(\text{H}_2\text{O}/\text{D}_2\text{O}\) solutions (Figure 5c) are essentially not shifted from the dry IL (Figure 5a).

Equilibrium Molar Fraction of Water in ILS. One of the key advantages of the TDMA measurements is that one can calculate \(\chi_w\) in the humidified particles exactly if the shapes and densities of the particles are known. Assuming that the nanoparticles are homogeneous spheres and that their densities are not substantially different from the densities of the corresponding bulk IL–water mixtures, one can derive the following relationship between GF and \(\chi_w\) (eq 2):

\[
\frac{\chi_w}{1 - \chi_w} = \frac{\text{MW}_{\text{IL}}}{\text{MW}_w} \left(\frac{\rho_{\text{solution}}(\chi_w)}{\rho_{\text{IL}}} \right) (\text{GF}^3 - 1)
\]

In this equation, MW is molecular weight, \(\rho\) is density, and the subscripts IL, w, and solution refer to IL, water, and their mixture, respectively. The \(\rho_{\text{solution}}\) data for \([\text{C}_2\text{MIM}]\)[BF\(_4\)] from Rilo et al.\(^{8}\) were fitted to an empirical dependence on \(\chi_w\) and eq 2 was solved numerically for \(\chi_w\) for every measured GF. For example, \(\chi_w\) of \([\text{C}_2\text{MIM}]\)[BF\(_4\)] nanoparticles at 83% RH was 0.725 \(\pm\) 0.004.

Literature data for the physical properties of imidazolium-based ILs containing [Cl\(^-\)] are scarce, so a formula based on an ideal solution behavior (i.e., additive volumes) was also derived (eq 3):

\[
\frac{\chi_{w,\text{ideal}}}{1 - \chi_{w,\text{ideal}}} = \frac{\text{MW}_{\text{IL}}}{\text{MW}_w} \left(\frac{\rho_{\text{IL}}}{\rho_w} \right) (\text{GF}^3 - 1)
\]

For \([\text{C}_2\text{MIM}]\)[BF\(_4\)], both eqs 2 and 3 could be used to calculated \(\chi_w\) whereas for \([\text{C}_2\text{MIM}]\)[Cl] particles only \(\chi_{w,\text{ideal}}\) could be calculated due to the lack of density data for \([\text{C}_2\text{MIM}]\)[Cl]–water solutions. We believe eq 3 is a reasonable alternative to the more accurate eq 2 because it produces almost the same result, \(\chi_{w,\text{ideal}} = 0.739 \pm 0.004\) for \([\text{C}_2\text{MIM}]\)[BF\(_4\)] at 83% RH. For \([\text{C}_2\text{MIM}]\)[Cl] nanoparticles, \(\chi_{w,\text{ideal}}\) was found to be 0.889 \(\pm\) 0.004 at 83% RH.

Strictly speaking, the equilibrium value of \(\chi_w\) in a bulk liquid and in a small droplet exposed to the same RH will not be the same because of the Kelvin effect (reduction in the equilibrium vapor pressure of a volatile solute above a curved surface). The Kelvin effect makes the hygroscopic GP of nanoparticles size dependent as demonstrated in previous work on hygroscopic growth of NaCl nanoparticles.\(^{86,87}\) However, for particles larger than 20 nm, this effect is relatively small and quantitatively predictable from bulk thermodynamics properties.\(^{86,87}\)

The Kelvin correction factor for the IL nanoparticles was estimated using surface tension versus water content measurements from Rilo et al.\(^{85}\) For the \(\sim27\) nm nanoparticles, the anticipated reduction in \(\chi_w\) compared to bulk is less than 5% for \([\text{C}_2\text{MIM}]\)[BF\(_4\)]. The Kelvin effect correction could not be calculated for \([\text{C}_2\text{MIM}]\)[Cl] due to lack of available surface tension data for the \([\text{C}_2\text{MIM}]\)[Cl]–water mixtures, but we believe it to be similarly small. In view of the small size of the Kelvin effect corrections, the reported \(\chi_w\) values were not corrected for this effect.

Figure 6a shows the dependence of the \(\chi_w\) in the ILs as a function of the RH, obtained by a direct inversion of the growth curves using eqs 2 and 3. With the exception of the small Kelvin effect correction and the uncertainty introduced by the unknown density of the \([\text{C}_2\text{MIM}]\)[Cl]–water mixtures, the accuracy of the \(\chi_w\) values should be comparable to that of bulk measurements. RH is intentionally placed on the vertical axis to discuss this dependence in terms of Raoult’s law (RH can be interpreted as the equilibrium vapor pressure of water above the IL–water mixture). The behaviors of \([\text{C}_2\text{MIM}]\)[Cl] and \([\text{C}_2\text{MIM}]\)[BF\(_4\)] are distinctly different. \([\text{C}_2\text{MIM}]\)[BF\(_4\)] exhibits relatively small positive deviations from Raoult’s law. This suggests that the strength of \([\text{C}_2\text{MIM}]\)[BF\(_4\)]–water interactions is weaker than or comparable in strength to the interactions of water–water and IL–IL. This is consistent with the narrow widths and small red-shifts of the O–H stretching bands in ATR-FTIR spectra of \([\text{C}_2\text{MIM}]\)[BF\(_4\)] (Figure 5c), which show that water molecules are not significantly perturbed by interactions with \([\text{C}_2\text{MIM}]\)[BF\(_4\)], and conversely, they do not significantly affect vibrations of the...
cation and the anion. In contrast to [C2MIM][BF4], [C2MIM][Cl]−water mixtures exhibit significant negative deviation in terms of Raoult’s law as a result of the very strong interactions between water and [Cl−]. This is again consistent with the IR spectra of the aqueous [C2MIM][Cl] solutions (Figure 4), which display a strongly red-shifted and broad O−H stretching band.

From the ATR-FTIR measurements, χw in the IL film exposed to water vapor can be estimated by comparing the relative areas of the C−H and O−H stretching vibrations. We calibrated this method by recording the ATR-FTIR spectra of premixed aqueous solutions of ILs of known composition. This method is necessarily approximate because the presence of water may affect the band strengths of the C−H vibrations, and vice versa, the O−H stretch band strengths may be influenced by the IL components to a different extent depending on the extent of dilution. Furthermore, it is difficult to cleanly separate the overlapping C−H and O−H stretches from each other because of the RH-dependent shifts in the positions of the bands. Nevertheless, the RH vs χw curves obtained from the ATR-FTIR spectra of premixed aqueous solutions of ILs of known composition. This method is necessarily approximate because the presence of water may affect the band strengths of the C−H vibrations, and vice versa, the O−H stretch band strengths may be influenced by the IL components to a different extent depending on the extent of dilution. Furthermore, it is difficult to cleanly separate the overlapping C−H and O−H stretches from each other because of the RH-dependent shifts in the positions of the bands.

MD Simulations of 1:1 IL−Water Mixtures. MD simulations of [C2MIM][Cl] and [C2MIM][BF4] mixed with water in 1:1 molar ratios were carried out to elucidate the interactions of water with the IL components and help interpret the observed FTIR spectra. Figure 7 and Table 1 compare

![Figure 6](image_url)
Figure 6. Molar fractions of water (χw) as a function of RH: (a) calculated from the GF values using eq 2 (actual densities) and eq 3 (ideal solution approximation); (b) inferred from the ATR-FTIR spectra. The dashed line on both plots represents Raoult’s law in terms of an ideal solution.

![Figure 7](image_url)
Figure 7. Hydrogen bond (H-bond) distribution histograms from MD simulation trajectories of (a) water oxygen (Owater) to Owater H-bonds in 1:1 mixtures of water with either bulk water, [C2MIM][Cl], or [C2MIM][BF4] and (b) Owater donor H-bonds to either chloride or fluorine anions.

<table>
<thead>
<tr>
<th>water−water</th>
<th>first shell (Å)</th>
<th>c.n.</th>
<th>H-bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>bulk water</td>
<td>3.35</td>
<td>4.7</td>
<td>3.6</td>
</tr>
<tr>
<td>[C2MIM][Cl]</td>
<td>3.25</td>
<td>0.36</td>
<td>0.3</td>
</tr>
<tr>
<td>[C2MIM][BF4]</td>
<td>3.65</td>
<td>1.15</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>water−anion</th>
<th>first shell (Å)</th>
<th>c.n.</th>
<th>H-bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owater to Cl</td>
<td>4.05</td>
<td>1.85</td>
<td>1.7</td>
</tr>
<tr>
<td>Owater to F</td>
<td>3.55</td>
<td>0.55</td>
<td>1.5</td>
</tr>
<tr>
<td>Owater to B</td>
<td>4.65</td>
<td>1.61</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Water Solvation Predicted by MD Simulations

First coordination shell location, coordination number (c.n.), and average number of hydrogen bonds (H-bonds) for water−water and water−anion interactions in 1:1 mixtures of water with either bulk water, [C2MIM][Cl], or [C2MIM][BF4].
To identify H-bond configurations in the mixed systems, a geometric criterion commonly used for bulk water was applied (donor−acceptor distance <3.5 Å and donor-H-acceptor angle >140°). The water oxygen radial distribution function (Figure 9a) yields similar locations for the first coordination shell and a similar trend in coordination number as the H-bond distributions mean values (Table 1), suggesting that this geometric criterion adequately describes H-bond interactions in the mixed system. Figure 9b shows the water oxygen to anion (Owater−anion) radial distribution functions for the 1:1 IL−water mixtures. Because of the smaller size of the fluorne atom, the average Owater−F separation in [C2MIM][BF4] is significantly smaller than the Owater−Cl separation in [C2MIM][Cl]. However, the interaction strength is larger in the latter because the negative charge in [BF4]− is more spatially distributed. The ionic complex Cl−···H2O has been investigated in the gas phase by a number of experimental and theoretical methods; its binding energy is 59 kJ mol−1. In contrast, no experiments or calculations have been performed on the BF4−···H2O complex to the best of our knowledge. It would be of interest to investigate the nature of H-bonding in this complex in the future.

We also predicted the frequency distributions corresponding to the O−H stretching vibration of water in [C2MIM][Cl], [C2MIM][BF4], and bulk water from the MD simulations, using an empirical relation between the electric field along the O−H bond and the O−H vibrational frequency derived for the SPC/E water model by Smith et al. Figure 10 compares these results with the ATR-FTIR data for the O−H stretch of HOD molecules in [C2MIM][Cl], [C2MIM][BF4], and bulk water. The simulations qualitatively reproduce the experimental observations. Specifically, the red-shift in the O−H stretch is predicted to be smaller in [C2MIM][BF4] compared to [C2MIM][Cl], the red-shift in [C2MIM][Cl] approaches that in bulk water, and the width of the bands is the largest in bulk water. This level of agreement gives us confidence that the force fields chosen for the MD simulations correctly capture the essential interactions in the IL−water mixtures and validates the differences in ion−water and water−water interactions in [C2MIM][BF4] vs [C2MIM][Cl] predicted by the MD simulations.

CONCLUSION

In this study, we have combined aerosol hygroscopicity methods, IR spectroscopy, and MD simulations to gain new insights into the interaction of water vapor with IL nanoparticles and thin films. Although the ILs under investigation, [C2MIM][Cl] and [C2MIM][BF4], share the same cation and only differ in the inorganic anion, their interaction with water is remarkably different. First, [C2MIM][Cl] takes up more water under equilibrium conditions than [C2MIM][BF4] at all RH values. This is evident from the larger hygroscopic GFs for the [C2MIM][Cl] nanoparticles and stronger water IR absorption bands for the [C2MIM][Cl] thin films exposed to water vapor. Second, the equilibrium vapor pressure above [C2MIM][Cl] exhibits negative deviation from Raoult’s law, whereas [C2MIM][BF4] deviates from Raoult’s law in a positive sense. Third, the shapes of the O−H stretching bands for water molecules absorbed into ILs are quite different. At low CH2O, the ν3 and ν1 bands in [C2MIM][BF4] are narrow, well resolved, and not significantly shifted from the O−H stretches in free water. In contrast, for [C2MIM][Cl], these bands coalesce into one broad O−H stretching band characterized by a significant red-shift. At higher CH2O, additional bands in [C2MIM][BF4] appear in the O−H stretching region characteristic of water aggregates. Fourth, MD simulations predict that water is more strongly associated with the anions than itself, especially so in [C2MIM][Cl]. This is
and large deviations from Raoult's law. For example, [C2MIM][Cl] and [C2MIM][BF4] are forgotten on a shelf at 83% RH will reach equilibrium χ at 83% RH will reach equilibrium and large deviations from Raoult’s law. The behavior of the [C2MIM][BF4]–water mixture is much closer to that of an ideal solution because of more balanced interactions between the mixture components. At higher RH, when enough water is absorbed by the ILs, the relative role of water–water interaction increases, and small clusters and chains of water molecules exist in the IL–water solution.

The amount of water that ILs can absorb under equilibrium conditions at any given RH is finite but quite substantial. For example, [C2MIM][Cl] and [C2MIM][BF4] are forgotten on a shelf at 83% RH will reach equilibrium χ at 83% RH will reach equilibrium and large deviations from Raoult’s law.

about ILs considering the significant effect of absorbed water on various physicochemical properties of ILs, including density, surface tension, and the ability to dissolve other compounds.

AUTHOR INFORMATION

Corresponding Author

E-mail nizkorod@uci.edu; Tel +1-949-824-1262.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support from the National Science Foundation (CHE-0909227). A.C.M. is grateful to the National Science Foundation for a NSF graduate student fellowship. T.M.M. acknowledges support from the UCI School of Physical Sciences Center for Solar Energy. The authors give special thanks to Nathaniel Sickerman at UCI for helpful discussions, Dr. Andy Borovik’s Group at UCI for use of their solvent line, Dr. Larry Overman’s Group at UCI for use of their Karl Fischer titrator, and John Morrison for help with the initial setup for the MD simulations. T.M.M. thanks Ross Boyle, Thermo Fisher Scientific, for useful discussions.

REFERENCES
