| 1  | Supporting Information for                                                                                                                                      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Atmospheric photosensitization: a new pathway for sulfate formation                                                                                             |
| 3  | Xinke Wang <sup>†</sup> , Rachel Gemayel <sup>†</sup> , Nathalie Hayeck <sup>†</sup> , Sebastien Perrier <sup>†</sup> , Nicolas Charbonnel <sup>†</sup> ,       |
| 4  | Caihong Xu <sup>‡</sup> , Hui Chen <sup>‡</sup> , Chao Zhu <sup>‡</sup> , Liwu Zhang <sup>‡</sup> , Lin Wang <sup>‡</sup> , Sergey A. Nizkorodov <sup>§</sup> , |
| 5  | Xinming Wang <sup>∥</sup> , Zhe Wang <sup>⊥</sup> , Tao Wang <sup>⊥</sup> , Abdelwahid Mellouki <sup>#</sup> , Matthieu Riva <sup>†</sup> , Jianmin             |
| 6  | Chen <sup><math>\ddagger, \P, *</math></sup> , Christian George <sup><math>\dagger, *</math></sup>                                                              |
| 7  | <sup>†</sup> Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France.                                                        |
| 8  | <sup>‡</sup> Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP <sup>3</sup> ), Department of                                        |
| 9  | Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai                                                              |
| 10 | 200438, China.                                                                                                                                                  |
| 11 | <sup>§</sup> Department of Chemistry, University of California, Irvine, Irvine, California, 92697, USA.                                                         |
| 12 | State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of                                                                           |
| 13 | Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese                                                                |
| 14 | Academy of Sciences, Guangzhou 510640, China                                                                                                                    |
| 15 | <sup>1</sup> Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong                                                 |
| 16 | 999077, China.                                                                                                                                                  |
| 17 | #Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS/OSUC, 45071                                                                   |
| 18 | Orléans Cedex 2, France                                                                                                                                         |
| 19 | <sup>¶</sup> Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China                                                                            |
| 20 | *To whom correspondence should be addressed. Email: <u>christian.george@ircelyon.univ-lyon1.fr</u> , Email:                                                     |
| 21 | jmchen@fudan.edu.cn                                                                                                                                             |
| 22 | This PDF file includes:                                                                                                                                         |
| 23 | Pages S1 to S18                                                                                                                                                 |
| 24 | Supplementary Information text                                                                                                                                  |
| 25 | Figs. S1 to S4                                                                                                                                                  |
| 26 | Tables S1 to S3                                                                                                                                                 |
| 27 | Other Supplementary Material for this manuscript includes the following:                                                                                        |
| 28 | Database S1                                                                                                                                                     |
|    | S1                                                                                                                                                              |

#### Supplementary Information text

Filter samples chemical analysis. For the UPLC separation, more details can be found in the 30 previous study.<sup>1</sup> In brief, ambient aerosol extracts were separated using a Waters Acquity HSS T3 31 column (1.8  $\mu$ m, 2.1  $\times$  100 mm) with acidified water (eluent A; 0.1%, v/v, formic acid) and 32 acidified acetonitrile (eluent B; 0.1%, v/v, formic acid). PFBHA derivatization was used to identify 33 organic compounds with carbonyl functional groups.<sup>1</sup> Two hundred µL of the extracts were mixed 34 with 800 µL of PFBHA solutions (1 mg/mL), then was left in darkness at room temperature for 24 35 h. However, the gradient elution procedure for PFBHA derivatives was different: eluent B 36 increased from 30% to 100% in 15 min, then was kept 100% for 2.5 min, and lastly returned to 37 30% and stabilized for 2.5 min. UV-Vis absorption was measured using the DAD over the 38 wavelength range of 190-798 nm. For the HRMS analysis, HESI voltages of -3 and 3 kV were 39 applied for negative and positive ionization mode (ESI- and ESI+) measurements, respectively. 40 Additionally, the sheath gas flow rate was set to 60 arbitrary units (au) and the auxiliary gas flow 41 42 rate to 20 au. A capillary temperature of 300 °C and a heater temperature of 400 °C were used. All measurements were performed using the highest mass resolution (R = 140,000 at m/z 200) and the 43 scanning range was set to m/z 50-750. However, carbonyl-containing compounds with high 44 45 molecular weight (> 554 Da) could not be differentiated using PFBHA derivatization due to the mass limitation of scanning range. 46

For the data analysis, Xcalibur 2.2 (Thermo, USA) and MZmine 2.33 were used. Formula assignments of the identified signals were achieved using mass tolerances of 2 ppm error in the ESI- and 3 ppm error in the ESI+. Moreover, more restrictions for formula assignments and LC-MS data processing are given in Tables S2-S3. Chromophores have also been distinguished by examining time periods of the UPLC-HRMS data corresponding to the DAD absorption peaks
(Fig. S2).

The setup and principle of the pulsed laser system. The centerpiece of the experimental set-up 53 is a Liquid Core Waveguide (LCW) made of Teflon AF 2400 (BioGeneral, San Diego, CA). Such 54 a type of material has been shown to exhibit excellent optical properties such as high optical clarity 55 56 (at  $\lambda > 200$  nm more than 80% of light is transmitted through a 220 µm thick film of the polymer described above) and very low refractive index (i.e., n=1.29 for Teflon AF 2400 grades). As a 57 result, once filled with water, the tubing will have the properties of a fiber optic waveguide. The 58 Teflon AF 2400 guide has an inner and outer diameter of 0.6 mm and 0.8 mm, respectively, a 59 length of 100 cm with an inner volume of 0.28 mL. This very small liquid volume represents the 60 major advantage of the waveguides compared to standard cells. 61

The highly flexible Teflon AF 2400 tubing was loosely coiled (less than 3 cm diameter) and 62 placed in the diverging laser beam path. Triplet states were generated within the LCW following 63 the laser flash of the precursors discussed above. As the waveguide was used as a coil, no 64 concentration gradient could build up along the waveguide length. However, non-uniform transient 65 concentration can be produced if the laser fluence on the coil is not uniform. To optimize 66 67 uniformity of the illumination of the front and back sides of the waveguide, we placed it inside a small box  $(1 \times 3 \times 3 \text{ cm}^3 \text{ height} \times \text{width} \times \text{depth})$  with inner walls coated by aluminum foil. This 68 69 ensured a better irradiation of the waveguide, however, in this configuration the fluence could not 70 be easily measured. Consequently, we made sure that all kinetics studied were unimolecular.

A peristaltic pump was used to transport the solutions at a flow of 1.6 mL min<sup>-1</sup>, and all connections were made of PTFE materials. The solution content of the Teflon photolysis cell was probed by spectrophotometry. The output of a 150 W high-pressure Xenon arc lamp was focused

on the entry of an unpolished 500-µm diameter fused silica optical fiber. The fiber delivered the 74 broadband radiation from the Xe-lamp to the entrance of the liquid core waveguide. The Teflon 75 AF tubing conducted the radiation up to its end where another fused silica optical fiber (located in 76 the liquid) collected some of this transmitted radiation and projected it on a slit of 1/4 m 77 monochromator (Spectral Products DK240) equipped with a 2400 grooves/mm grating, and a 78 79 photomultiplier tube detector (Hamamatsu H7732-01). The photo-multiplier signal was passed through a high-speed current amplifier/discriminator (Femto) and the AC component recorded on 80 a 300 MHz oscilloscope (Tektronix TDS3032c). The digitized signals were eventually transferred 81 to a microcomputer for further analysis. Measurements were repeated every 10-15 nm between 82 350 and 650 nm to construct the absorption spectrums. 83

Sulfate production rate calculations. Sulfate production rates were calculated for different aqueous-phase reaction pathways with  $O_3$ ,  $H_2O_2$ , TMIs and  $NO_2$ , according to the detailed description made by Cheng et al.,<sup>2</sup> and briefly reproduced below.

For the "Beijing haze" scenario, the following input parameters were used:  $[PM_{2.5}] = 300 \ \mu g \ m^{-3}$ , [SO<sub>2</sub> (g)] = 40 ppb,  $[NO_2 (g)] = 66 \ ppb$ ,  $[H_2O_2 (g)] = 0.25 \ ppb$ ,<sup>3</sup>  $[O_3 (g)] = 1 \ ppb$ , aerosol water content (AWC) = 300  $\mu g \ m^{-3}$ , aerosol droplet radius  $R_p = 0.15 \ \mu m$ , and  $T = 271 \ K$ . The total soluble Fe and Mn were used as 18 and 42 ng m<sup>-3</sup>, but their exact concentrations are pH-dependent and obtained from the following equations:

92

$$[Fe(III)] = \frac{K_{sp,Fe(OH)3}}{[OH^-]^3} \text{ and } [Mn(II)]_{sat} = \frac{K_{sp,Mn(OH)2}}{[OH^-]^2}$$
(Eq. S1)

where  $K_{sp, Fe (OH)3}$  and  $K_{sp, Mn (OH)2}$ , the precipitation constants of Fe (OH)<sub>3</sub> and Mn (OH)<sub>2</sub>, are 6×10<sup>-</sup> <sup>38</sup> and 1.6×10<sup>-13</sup>, respectively.<sup>4</sup> The physical Henry's constants (H, M atm<sup>-1</sup>) of SO<sub>2</sub>, O<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and NO<sub>2</sub> are 1.23, 1.1×10<sup>-2</sup>, 1.0×10<sup>5</sup>, and 1.0×10<sup>-2</sup>, respectively, so their concentrations in the liquid 96 phase could be calculated based on the Henry's law. In addition, the temperature dependent
97 Henry's constants can be calculated as:

$$H(T) = H(T_0) \exp\left[-\frac{\Delta H_{298K}}{R} \left(\frac{1}{T} - \frac{I}{T_0}\right)\right]$$
(Eq. S2)

99 where the  $-\Delta H_{298K}/R$  normalized enthalpy of dissolution values for SO<sub>2</sub>, O<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and NO<sub>2</sub> are 100  $3.1 \times 10^3$ ,  $2.5 \times 10^3$ ,  $7.3 \times 10^3$ , and  $2.5 \times 10^3$  (K), respectively. The dissociation equilibrium constants 101 (K) for the Eq. 2 in the main text (K<sub>s1</sub>) and the Eq. 3 (K<sub>s2</sub>) are  $1.3 \times 10^{-2}$  M and  $6.6 \times 10^{-8}$  M at 298K. 102 The following rate laws for the sulfate production rate (R<sub>aq</sub>) calculations were used, again 103 according to Cheng et al.<sup>2</sup>

• by ozone:

105 
$$\frac{d[so_4^{2-}]}{dt} = (k_1[SO_2 \cdot H_2O] + k_2[HSO_3^{--}] + k_3[SO_3^{2--}])[O_3(aq)]$$
(Eq. S3)

106 where 
$$k_1 = 2.4 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$$
,  $k_2 = 3.7 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$ ,  $k_3 = 1.5 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ .

110

115

$$\frac{d[SO_4^{2-}]}{dt} = \frac{k_4[H^+][HSO_3^-][H_2O_2]}{1+K[H^+]}$$

(Eq. S4)

109 where 
$$k_4 = 7.45 \times 10^7 \text{ M}^{-2} \text{s}^{-1}$$
,  $K = 13 \text{ M}^{-1}$ 

#### • by the transition metal ions:

111 
$$pH \le 4.2, \frac{d[so_4^{2^-}]}{dt} = k_5[H^+]^{-0.74}[Mn(II)][Fe(III)][S(IV)]$$
 (Eq. S5)

113 where 
$$k_5 = 3.72 \times 10^7$$
,  $k_6 = 2.51 \times 10^{13}$ .

114 • by NO<sub>2</sub>:

$$\frac{d[so_4^{2^-}]}{dt} = k_7[NO_2(aq)][S(IV)]$$
(Eq. S7)

where  $k_7$  could be two different values based on two studies (Cheng et al.<sup>2</sup> and references therein),  $k_{7, low} = (0.14 \sim 2) \times 10^6 \text{ M}^{-1} \text{s}^{-1}$  or  $k_{7, high} = 2.51 \times 10^{13} \text{ M}^{-1} \text{s}^{-1}$ . In this calculation, the average rate calculated by  $k_{7, low}$  and  $k_{7, high}$  were used following Cheng et al.<sup>2</sup>

• Finally, for the T\* oxidation pathway, we used:

$$\frac{d[so_4^{2^-}]}{dt} = k_q[T^*]([SO_2 \cdot H_2O] + [HSO_3^-])$$
(Eq. S8)

121 where  $k_q = 1.3 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$  calculated based on Fig. 3.

It should be noted that the kinetics for TMIs and  $T^*$  oxidation pathways were used at 298 K due to the lack of the information on E/R, which would be overestimated for the sulfate production rates during the Beijing winter haze scenario (271 K). For the influences of ionic strength on aqueous sulfate-producing reactions, the rate constants were taken as for diluted solutions.<sup>2</sup>

126

### **Figures and Tables**



#### 

**Fig. S1. Schematic of the pulsed laser excitation system.** 



Fig. S2. UPLC-DAD absorption and ion chromatograms. (A) An example demonstrating the method used for identification of a potential chromophore (C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>) responsible for light absorption (290-350 nm). (B) The selected blank-subtracted absorption chromatograms at 300, 325, and 350 nm. The peaks were labeled by the formulas of the probable chromophores. \* A molecule contains at least one carbonyl functional group.

136

130

138





Fig. S3. Transient absorption decays of (A) acetophenone, (B) flavone, (C) xanthone, and
 (D) 4-BBA triplet state in deoxygenated aqueous solutions without S(IV) but at different
 pH, respectively.







Fig. S4. Transient absorption decay of the (A) acetophenone, (B) flavone, (C) xanthone, (D) 4-BBA, and (E) AA (Extracts from the ambient samples) triplet state in deoxygenated aqueous solutions with different concentrations of Na<sub>2</sub>SO<sub>3</sub> at same pH, respectively. The 4-BBA concentrations were 40  $\mu$ M (\*) and 20  $\mu$ M (<sup>#</sup>), respectively, and the experiments with low concentrations of sulfite were used to make the Stern-Volmer plot and calculate the rate coefficient for the 4-BBA triplet state with hydrated SO<sub>2</sub>.

161

162 163

164

Table S1: The rate coefficients for the quenching processing by the hydrated SO<sub>2</sub> and bisulfite based on regression analysis.

| Dhotoconsitizon | $k_{q(SO2 \cdot H2O)}$ | k <sub>q(HSO3-)</sub> | $\mathbf{k}_0$    | Standard  | Multiple | Significant |
|-----------------|------------------------|-----------------------|-------------------|-----------|----------|-------------|
| Photosensitizer | $(M^{-1} s^{-1})$      | $(M^{-1} s^{-1})$     | $(M^{-1} s^{-1})$ | deviation | R        | F           |
| Flavone         | 7.0E+08                | 1.5E+08               | 2.7E+05           | 6.2E+04   | 9.8E-01  | 3.2E-05     |
| Xanthone        | 4.9E+08                | 2.1E+09               | 2.5E+05           | 9.3E+04   | 9.9E-01  | 6.1E-11     |

165 166

167

168 169

170

## 172Table S2: Parameter settings used for processing the LC-MS raw data from negative mode173measurements using the MZmine 2.33 software package.

| 1) mass detection                  |                                      |
|------------------------------------|--------------------------------------|
| Raw data files                     | All                                  |
| Retention time                     | 0 - end (auto range)                 |
| MS level                           | 1                                    |
| Spectrum type                      | Any                                  |
| Mass detector                      | Wavelet transform:                   |
|                                    | Noise level $= 500$                  |
|                                    | Scale level $= 5$                    |
|                                    | Wavelet window size $= 30\%$         |
| Mass list name                     | Masses                               |
| 2) FTMS shoulder peaks filter      |                                      |
| Raw data files                     | All                                  |
| Mass list                          | Masses                               |
| Mass resolution                    | 140 000                              |
| Peak model function                | Lorentzian                           |
| Suffix                             | Filtered                             |
| Remove original peak list          | Off                                  |
| 3) ADAP chromatogram builder       |                                      |
| Raw data files                     | All                                  |
| Retention time                     | 1.5 – end                            |
| Mass list                          | Masses filtered                      |
| Min group size in b of scans       | 6                                    |
| Group intensity threshold          | 100                                  |
| Min highest intensity              | 1000                                 |
| m/z tolerance                      | $0.001 \ m/z$ (and 0 ppm)            |
| Suffix                             | chromatograms                        |
| 4) order peak lists alphabetically |                                      |
| 5) Chromatogram deconvolution      |                                      |
| Peak lists                         | All                                  |
| Suffix                             | Deconvoluted                         |
| Algorithm                          | Wavelets (ADAP)                      |
|                                    | S/N threshold = 10                   |
|                                    | S/N estimator = Intensity window SN  |
|                                    | Min feature height = $1000$          |
|                                    | coefficient/area threshold = 120     |
|                                    | Peak duration range = $0.05 - 1.00$  |
|                                    | RT wavelet range = $0.00 - 0.10$     |
| m/z range for MS2 scan pairing     | Off                                  |
| RT range for MS2 scan pairing      | Off                                  |
| Remove original neak list          | Off                                  |
| 6) CAMERA search                   | 0.1                                  |
| Peak lists                         | Those created by previous batch step |
| FWHM                               |                                      |
| FWHM percentage                    | 60%                                  |
| Isotones max charge                | 2                                    |
| Isotopes max ner cluster           |                                      |
|                                    | $\tau$ 0.003 m/z (and 0 ppm)         |
| Correlation threshold              |                                      |
| Correlation p value                | 0.15                                 |
| Lonization polarity                | Nogativa                             |
| Do not split isotopos              | Off                                  |
| DO HOUSDIN ISOLODES                |                                      |

| Order                              | Perform shape correlation before isotope search |  |
|------------------------------------|-------------------------------------------------|--|
| Create new list                    | On                                              |  |
| Group peaks by                     | Isotope ID                                      |  |
| Include singletons                 | On                                              |  |
| Suffix                             | CAMERA                                          |  |
| R engine                           | R caller                                        |  |
| 7) Order peak lists alphabetically |                                                 |  |
| 8) Join aligner                    |                                                 |  |
| Peak lists                         | Those created by previous batch step            |  |
| Peak list name                     | Aligned peak list                               |  |
| m/z tolerance                      | $0.001 \ m/z \ (and \ 0 \ ppm)$                 |  |
| Weight for $m/z$                   | 3                                               |  |
| Retention time tolerance           | 0.5 min (absolute)                              |  |
| Weight for RT                      | 2                                               |  |
| Require same charge state          | Off                                             |  |
| Require same ID                    | Off                                             |  |
| Compare isotope patter             | On                                              |  |
|                                    | Tolerance = $0.005 m/z$ (and 0 ppm)             |  |
|                                    | Min absolute intensity $= 100$                  |  |
|                                    | Minimum score $= 0\%$                           |  |
| 9) clear peaklist annotations      |                                                 |  |
| 10) formula identification         |                                                 |  |
| Charge                             | 1                                               |  |
| Ionization type                    | [M–H]–                                          |  |
| Peak lists                         | Aligned peak list                               |  |
| m/z tolerance                      | 0.0 <i>m/z</i> or 2 ppm                         |  |
| Elements                           |                                                 |  |
|                                    | C = 1 - 40                                      |  |
|                                    | H = 0 - 100                                     |  |
|                                    | O = 0 - 40                                      |  |
|                                    | N = 0 - 5                                       |  |
|                                    | S = 0 - 3                                       |  |
| Element count heuristics           | On                                              |  |
|                                    | H/C ratio = $On$                                |  |
|                                    | NOPS/C ratio = On                               |  |
|                                    | Multiple element counts = On                    |  |
| RDBE restrictions                  | On                                              |  |
|                                    | Range = 0 - 25                                  |  |
|                                    | Must be an integer $=$ On                       |  |
| Isotope pattern filter             | On                                              |  |
|                                    | Tolerance = $0.005 m/z$ (and 0 ppm)             |  |
|                                    | Min absolute intensity $= 100$                  |  |
|                                    | Minimum score $= 0\%$                           |  |
| MS/MS filter                       | Off                                             |  |
| 11) export to csv file             |                                                 |  |

#### Table S3: Parameter settings used for processing the LC-MS raw data from positive mode measurements using the MZmine 2.33 software package. 176 177

| 1) n | nass detection                                |                                      |
|------|-----------------------------------------------|--------------------------------------|
|      | Raw data files                                | All                                  |
|      | Retention time                                | 0 - end (auto range)                 |
|      | MS level                                      | 1                                    |
|      | Spectrum type                                 | Any                                  |
|      | Mass detector                                 | Wavelet transform:                   |
|      |                                               | Noise level $= 500$                  |
|      |                                               | Scale level = 5                      |
|      |                                               | Wavelet window size = 30%            |
|      | Mass list name                                | Masses                               |
| 2) F | TMS shoulder peaks filter                     |                                      |
|      | Raw data files                                | All                                  |
|      | Mass list                                     | Masses                               |
|      | Mass resolution                               | 140 000                              |
|      | Peak model function                           | Lorentzian                           |
|      | Suffix                                        | Filtered                             |
|      | Remove original peak list                     | Off                                  |
| 3) A | ADAP chromatogram builder                     | [                                    |
|      | Raw data files                                | All                                  |
|      | Retention time                                | 1.5 – end                            |
|      | Mass list                                     | Masses filtered                      |
|      | Min group size in b of scans                  | 6                                    |
|      | Group intensity threshold                     | 100                                  |
|      | Min highest intensity                         |                                      |
|      | m/z tolerance                                 | 0.001 m/z (and 0 ppm)                |
|      | Sullix<br>udan maala lista alah ah ati aallar | chromatograms                        |
| 4)0  | Shromotogram deconvolution                    |                                      |
| 5) ( | Dook lists                                    | A 11                                 |
|      | Suffix                                        | Deconvoluted                         |
|      | Algorithm                                     | Wavelets (ADAP)                      |
|      |                                               | S/N threshold – 10                   |
|      |                                               | S/N estimator = Intensity window SN  |
|      |                                               | Min  feature height = 1000           |
|      |                                               | coefficient/area threshold = 120     |
|      |                                               | Peak duration range = $0.05 - 1.00$  |
|      |                                               | RT wavelet range = $0.00 - 0.10$     |
|      | m/z range for MS2 scan pairing                | Off                                  |
|      | RT range for MS2 scan pairing                 | Off                                  |
|      | Demove original peak list                     | Off                                  |
| 6.0  | AMEDA acareh                                  | OII                                  |
| 0)(  | Doole ligts                                   | Those created by pravious batch step |
|      | Feak lists                                    | 110se created by previous batch step |
|      | FWHM porcentage                               | 60%                                  |
|      | I willy percentage                            | 2                                    |
|      | Isotopes may per cluster                      | 2<br>/                               |
|      | Isotopes mass tolerance                       | $\pi$ 0.003 m/z (and 0 ppm)          |
|      | Correlation threshold                         | 0.75                                 |
|      | Correlation p-value                           | 0.05                                 |
|      | Ionization polarity                           | Positive                             |
|      | Do not split isotopes                         | Off                                  |
|      |                                               |                                      |

| Order          |                        | Perform shape correlation before isotope search |
|----------------|------------------------|-------------------------------------------------|
| Create n       | ew list                | On                                              |
| Group pe       | eaks by                | Isotope ID                                      |
| Include s      | singletons             | On                                              |
| Suffix         |                        | CAMERA                                          |
| R engine       |                        | R caller                                        |
| 7) Order pea   | k lists alphabetically |                                                 |
| 8) Join aligne | er                     |                                                 |
| Peak list      | S                      | Those created by previous batch step            |
| Peak list      | name                   | Aligned peak list                               |
| m/z toler      | ance                   | 0.001 m/z (and 0 ppm)                           |
| Weight f       | for <i>m/z</i>         | 3                                               |
| Retentio       | n time tolerance       | 0.5 min (absolute)                              |
| Weight f       | for RT                 | 2                                               |
| Require        | same charge state      | Off                                             |
| Require        | same ID                | Off                                             |
| Compare        | e isotope patter       | On                                              |
| Î              | * *                    | Tolerance = $0.005 \ m/z$ (and 0 ppm)           |
|                |                        | Min absolute intensity $= 100$                  |
|                |                        | Minimum score = $0\%$                           |
| 9) clear peak  | list annotations       |                                                 |
| 10) formula i  | dentification          |                                                 |
| Charge         |                        | 1                                               |
| Ionizatio      | on type                | [M+H]+                                          |
| Peak list      | s                      | Aligned peak list                               |
| m/z toler      | ance                   | $0.001 \ m/z$ (and 0 ppm)                       |
| Elements       | S                      |                                                 |
|                |                        | C = 1 - 40                                      |
|                |                        | H = 0 - 100                                     |
|                |                        | O = 0 - 40                                      |
|                |                        | N = 0 - 5                                       |
|                |                        | S = 0 - 5                                       |
| Elements       | s (PFBHA derivative)   |                                                 |
|                |                        | C = 1 - 40                                      |
|                |                        | H = 0 - 100                                     |
|                |                        | O = 0 - 40                                      |
|                |                        | N = 0 - 5                                       |
|                |                        | S = 0 - 5                                       |
|                |                        | F = 0 - 25                                      |
| Element        | count heuristics       | On                                              |
|                |                        | H/C ratio = $On$                                |
|                |                        | NOPS/C ratio = On                               |
|                |                        | Multiple element counts = On                    |
| RDBE re        | estrictions            | On                                              |
|                |                        | Range = 0 - 25                                  |
|                |                        | Must be an integer = On                         |
| Isotope p      | pattern filter         | On                                              |
|                |                        | Tolerance = $0.005 \ m/z$ (and 0 ppm)           |
|                |                        | Min absolute intensity = 100                    |
|                |                        | Minimum score = 0%                              |
| MS/MS          | filter                 | Off                                             |
| 11) export to  | csv file               |                                                 |

**Database S1.** The formula lists of organic compounds in ambient aerosol samples.

# **References:**182

| 182 |    |                                                                                                                               |
|-----|----|-------------------------------------------------------------------------------------------------------------------------------|
| 183 | 1. | Wang, X.; Hayeck, N.; Brüggemann, M.; Yao, L.; Chen, H.; Zhang, C.; Emmelin, C.; Chen, J.;                                    |
| 184 |    | George, C.; Wang, L., Chemical Characteristics of Organic Aerosols in Shanghai: A Study by                                    |
| 185 |    | Ultrahigh-Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry. J                                        |
| 186 |    | Geophys. Res Atm. 2017, 122, (21), 11,703-11,722.                                                                             |
| 187 | 2. | Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.;                                       |
| 188 |    | Carmichael, G.; Pöschl, U.; Su, H., Reactive nitrogen chemistry in aerosol water as a source of sulfate                       |
| 189 |    | during haze events in China. Science Advances 2016, 2, (12), e1601530.                                                        |
| 190 | 3. | Ye, C.; Liu, P.; Ma, Z.; Xue, C.; Zhang, C.; Zhang, Y.; Liu, J.; Liu, C.; Sun, X.; Mu, Y., High H <sub>2</sub> O <sub>2</sub> |
| 191 |    | Concentrations Observed during Haze Periods during the Winter in Beijing: Importance of H <sub>2</sub> O <sub>2</sub>         |
| 192 |    | Oxidation in Sulfate Formation. Environ. Sci. Technol. 2018, 5, (12), 757-763.                                                |
| 193 | 4. | Graedel, T. E.; Weschler, C. J., Chemistry within aqueous atmospheric aerosols and raindrops. Rev.                            |
| 194 |    | <i>Geophys.</i> <b>1981,</b> <i>19</i> , (4), 505-539.                                                                        |
| 195 | 5. | Ibusuki, T.; Takeuchi, K., Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II)                          |
| 196 |    | and iron(III) in aqueous solutions at environmental reaction conditions. Atmospheric Environment                              |
| 197 |    | (1967) <b>1987</b> , 21, (7), 1555-1560.                                                                                      |
| 198 |    |                                                                                                                               |
|     |    |                                                                                                                               |