
Effect of Ammonium Salts on the Decarboxylation of Oxaloacetic
Acid in Atmospheric Particles
Alexandra L. Klodt, Kimberly Zhang, Michael W. Olsen, Jorge L. Fernandez, Filipp Furche,
and Sergey A. Nizkorodov*

Cite This: ACS Earth Space Chem. 2021, 5, 931−940 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Oxaloacetic acid (OAA) is a 3-oxocarboxylic acid
formed from the oxidation of succinic acid. OAA and other 3-
oxocarboxylic acids experience a decarboxylation reaction in
aqueous solutions, which can be catalyzed by ammonium and
amines. This catalysis has not been studied under atmospherically
relevant conditions despite previous interest in OAA in the
atmosphere. To address this, 1 mM solutions of OAA were
prepared with varying concentrations of ammonium sulfate,
ammonium bisulfate, ammonium chloride, and sodium sulfate to
simulate various atmospheric conditions. The extent of the
decarboxylation was monitored using UV−visible absorption
spectroscopy. OAA’s uncatalyzed decarboxylation lifetime was
around 5 h. Under moderately acidic conditions representative of
aerosol particles (pH = 3−4), the decarboxylation rate increased linearly with ammonium concentration up to about 2.7 M, after
which additional ammonium had no effect. The effective lifetime of OAA reduced to approximately 1 h under these conditions.
Density functional theory calculations support the proposed catalytic mechanism, predicting the free energy barrier height for
decarboxylation to be approximately 21 kcal/mol lower after OAA has reacted with ammonium. In more acidic solutions (pH < 1),
OAA’s decarboxylation was suppressed, with lifetimes of tens of hours, even in the presence of ammonium. A comparison of the
decarboxylation rate with the expected rate of oxidation by OH suggests that decarboxylation will be the dominant loss mechanism
for OAA, and presumably other 3-oxocarboxylic acids, in aerosol particles and cloud/fog droplets. This result explains why OAA is
hard to detect in field measurements even though it is a known oxidation product of succinic acid.
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■ INTRODUCTION

The importance of secondary organic aerosol (SOA)
formation and aging has been recognized based on SOA’s
ability to affect climate, air quality, and health.1 SOA is
generally comprised of molecules containing carbonyl,
carboxyl, and hydroxyl functional groups.2 Oxocarboxylic
acids and dicarboxylic acids comprise a major fraction of
SOA mass as a result of their low vapor pressures.3 Their
abundance in atmospheric water is also high as a result of their
high polarity.4 Their prevalence in SOA and water solubility
makes dicarboxylic acids, oxocarboxylic acids, and oxodicar-
boxylic acids (molecules that have two carboxyl groups and at
least one keto group) good representative molecules for SOA
found in the aqueous phase, such as aerosol liquid water or
cloud droplets, and studying their possible aqueous reactions is
important for understanding the fate of SOA molecules
dissolved in atmospheric water.3,5−12

The ionic strengths for atmospheric water generally fall
between 10−5 and 10−2 M for cloud/fog water and in excess of
1 M in deliquescent aerosol particles.8 The major contributors

to the ionic strength are sulfate and ammonium ions, especially
in areas dominated by anthropogenic emissions of ammonia
and sulfur dioxide,5 but other inorganic ions including nitrate,
chloride, and sodium also contribute. These hygroscopic
species have the potential to affect the chemistry of SOA in the
aqueous phase through various mechanisms. Ammonium ions
are especially interesting in this regard because they directly
affect the pH, and they can act as a catalyst for various
processes by reacting with carbonyl and other oxygen-
containing groups.13,14 One such ammonium-catalyzed process
is the main focus of this work.
Oxaloacetic acid (OAA) is a 3-oxodicarboxylic acida class

of compounds, which are known to undergo the decarbox-
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ylation reaction shown in simplified Scheme 1. OAA can be
formed by the oxidation of succinic acid,15 which is prevalent

in the atmosphere,9,12 and OAA has recently been observed in
atmospheric aerosols.6,7,16 Previously, the decarboxylation
reaction of 3-oxocarboxylic acids has been suggested by
Römpp et al.11 to explain the absence of 3-oxodicarboxylic
acids detected in field data, despite their assumed formation
and detection in laboratory-generated SOA. In fact, it has been
known for some time that OAA’s decarboxylation reaction can
be catalyzed by ammonium and other amines.17 Because OAA
is an important molecule in the citric acid cycle,18 this
decarboxylation reaction and response to ammonium and
amines has been reported in previous studies, usually under
more neutral or basic conditions and ionic strengths and
temperatures more representative of the human body.19−22

The behavior of OAA under the higher ionic strength
conditions of deliquescent aerosol particles has not been
studied.
The ammonium-catalyzed decarboxylation of OAA has not

been studied with theoretical methods. Previous theoretical
calculations have provided many mechanistic insights into
catalysis of reaction by diamines, although with the important
limitation that they do not exhaustively explore possible
decarboxylation pathways. Song et al.24 reported a detailed
mechanism and proton-transfer pathway for the uncatalyzed
and ethylenediamine-catalyzed decarboxylation of undissoci-
ated OAA in the gas phase and aqueous phase proposed using
semilocal density functional theory (DFT). They found an
uncatalyzed free energy barrier of about 24 kcal/mol and an
ethylenediamine-catalyzed free energy barrier of approximately
14 kcal/mol, and the dehydration of the carbinolamine to form
an imine was the rate-limiting step for the catalyzed reaction. A
detailed mechanism for fully deprotonated OAA at pH 8.0 with

and without catalysis by protonated ethylenediamine was
calculated by Cheng.25 When fully deprotonated, the
dehydration of the carbinolamine was still the rate-limiting
step, but the free energy barrier was greater: 49 kcal/mol with
ethylenediamine catalysis (the free energy barrier and the rate-
limiting step without a catalyst were not discussed). Finally,
Fan and Song26 used DFT to compare several protonated
diamine catalysts in the decarboxylation of OAA’s anions
(OAA− and OAA2−). They calculated the decarboxylation step
to have the highest free energy for OAA2− in the presence of all
diamine catalysts, while the dehydration of the carbinolamine
was rate-determining for OAA− with most of the catalysts.
We have examined the chemistry of OAA in the presence of

varying, atmospherically relevant concentrations of NH4
+ and

SO4
2−, as well as Na+ and Cl− for comparison, which simulate a

number of aqueous conditions found in the atmosphere. We
also report electronic structure calculations in order to
generate the energy diagrams of both the uncatalyzed and
ammonium-catalyzed decarboxylation of OAA. We propose
that the ammonium-catalyzed reaction goes through a six-
membered ring transition state, which is analogous to the
known transition state of the uncatalyzed reaction, as
presented in Scheme 2. We compare the activation energies
of both mechanisms to validate our experimental results. We
show that decarboxylation in the presence of ammonium
occurs on time scales of hours, and therefore controls the
lifetime of OAA, and likely all other 3-oxocarboxylic acids, in
the presence of ammonium sulfate aerosols.

■ MATERIALS AND METHODS

Sample Aging. OAA (97% purity) was purchased from
Millipore Sigma. Ammonium sulfate (99% purity), ammonium
bisulfate (98% purity), ammonium chloride (99% purity), and
sodium sulfate (99% purity) were purchased from Fisher
Scientific. All compounds were used without further
purification. OAA was dissolved in pure Milli-Q water or
solutions of varying concentrations of ammonium sulfate,
ammonium bisulfate, sodium sulfate, or ammonium chloride to
make 1 mM solutions of OAA. The OAA dissolved promptly
upon contact with the solution, so minimal mixing was
required. The time between solution preparation and the
beginning of measurements was minimized (<5 min) to
control the amount of time spent in the aqueous phase,
allowing for the observation of as much of the decarboxylation
reaction as possible. The rate of the decarboxylation reaction
shown in Scheme 1 was monitored using the peak in
absorbance at 260 nm using a UV−vis spectrometer
(Shimadzu UV-2450), which was programmed to collect a
spectrum at set time intervals, ranging from 10 to 30 min
depending on the rate at which the absorbance decayed. The 1

Scheme 1. Decarboxylation Reaction of OAAa

aThe mechanism is based on Thalji et al.22 The reaction is adjusted to
represent the majority species at pH 3 to 4 by not deprotonating the
carboxylic acid at carbon 4. The pK3 of the carboxylic acid at carbon 1
is 2.15 and the pKa of the carboxylic acid at carbon 4 is 4.06.23 The
reaction is catalyzed by forming an imine as shown here.

Scheme 2. Proposed Mechanism for OAA’s Decarboxylation Including the Six-Membered Ring Transition State (a) without
Catalyst and (b) in the Presence of Ammonium
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mM OAA concentration was specifically chosen to provide a
starting 260 nm absorbance around one to ensure a good
signal-to-noise ratio. We did not vary the starting concen-
tration in these experiments since OAA exhibited first-order
decay. The pH value for each starting sample was measured
using a Mettler Toledo SevenEasy pH meter. The pH of the
solutions did not change significantly throughout the experi-
ments, which agrees with previous work.27,28

Rate Constant and Branching Ratio Calculations. Rate
constants and standard deviations were determined by fitting
the absorbance at 260 nm over time to a first-order rate law.
Sample fits to the data are shown in Figures S1−S3. The
decarboxylation reaction has also been shown to be of first
order in previous studies.21,29

To determine the importance of the decarboxylation
reaction relative to other loss processes, the measured rate
constants were converted into lifetimes with respect to
decarboxylation, and compared to calculated lifetimes with
respect to oxidation by OH using the method described in ref
30. We define Q below as the ratio of the rate of oxidation of
OAA by OH to the rate of decarboxylation

τ
τ

= =
[ ]

Q
k

k
OHd

OH

OH

d (1)

where τd is the lifetime of OAA with respect to decarbox-
ylation, τOH is the lifetime of OAA with respect to OH
oxidation, kOH is the bimolecular rate constant for OAA’s
reaction with OH, and kd the measured unimolecular rate
constant for OAA’s decarboxylation. OH concentrations for
deliquescent particles and cloud/fog water have been
estimated to be 10−16 to 10−15 M.31−33 Therefore, for the
purposes of this comparison, the OH concentration was
assumed to be 10−15 M for most of the discussion, although the
implications of higher OH concentrations are addressed
briefly.
The reaction rate of OAA with the OH radical has not been

previously determined, so the structure−activity relationships
(SARs) for aqueous OH-oxidation developed by Monod and
Doussin34,35 were used to estimate kOH for OAA. OAA has

multiple acid−base sites and can form a gem-diol or enol in the
aqueous phase, so the mixture of compounds contributing to
its OH reactivity is complex. Equilibrium ratios of all possible
forms of OAA present in aqueous solutions at various pH
values were previously determined by Kozlowski and Zuman20

and were used here to determine a weighted rate constant for
the OH-oxidation of OAA. The rate constants for the OH-
oxidation of unsaturated compounds were not included in the
SARs’ training data set,34,35 so the enol forms of OAA could
not be calculated. Instead, the OH-oxidation rate of the closely
related but-2-enedioic acid was used to estimate the OH
reactivity of the enol forms of OAA (for equilibrium ratios and
more details on OH-oxidation calculations, see Tables S2 and
S3).

Computational Details. To further analyze our exper-
imental results, we performed electronic structure calculations
to obtain the energy diagrams for both the uncatalyzed and
ammonium-catalyzed decarboxylation of OAA. The main goal
of these simulations was to establish the mechanism for
decarboxylation, rather than quantitatively predict the rate
constants, using resource-efficient computational methodology.
Geometries of the reactants, transition-state intermediates, and
products were fully optimized within DFT using the hybrid
exchange−correlation functional of Perdew, Burke, and
Ernzerhof (PBE0)36 in combination with the resolution-of-
identity approximation.37 PBE0 has been shown to give
acceptably accurate barrier heights based on previous work,30

so in the interest of computational cost, other hybrid
exchange−correlation functionals were not tested. Polarized
triple-zeta valence basis sets (def2-TZVPP)38 were used for all
atoms. Very fine size four39 (grids) was used for numerical
integration, and ground-state energies converged to 10−8

hartree. Analytical second derivative (AOFORCE)40 calcu-
lations were performed to confirm that all optimized structures
were minima of the potential energy surface. In addition to
doing calculations for isolated molecules, we also performed
calculations for molecules in a dielectric medium. To this end,
the conductor-like screening model (COSMO)41 was
employed with the dielectric constant for water, 80.1.42 For

Figure 1. Absorption spectrum of OAA in water over time. The spectrum shows a peak at 260 nm, which decays with a first-order rate constant of
(5.91 ± 0.15) × 10−5 s−1 for the trial shown, giving OAA a lifetime of about 5 h with respect to decarboxylation in the absence of ammonium ions
or other catalysts.
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each proposed mechanism, a search for transition states was
performed by scanning the ground-state potential energy
surface along the carbon C3−C4 bond distance, followed by an
unconstrained transition state optimization. The validity of the
transition state structures was checked using numerical finite
differences of analytical gradients43 to ensure there was one
imaginary frequency. The Gibbs free energies of each species
within the rigid-rotor harmonic oscillator approximation at 25
°C and 1 atm were subsequently calculated. Energy diagrams
for OAA’s decarboxylation were generated by setting the
reference energy of all the reactants to zero. All electronic
structure calculations were carried out with the TURBO-
MOLE electronic structure program suite, version V7.3.44

■ RESULTS AND DISCUSSION
Uncatalyzed Decarboxylation. Decarboxylation of OAA

occurs slowly in pure water, and we remeasured the rate of this
process in control experiments. The change in the absorbance
spectrum over time can be seen in Figure 1. We determined
the uncatalyzed rate constant for the decarboxylation to be
(5.24 ± 0.95) × 10−5 s−1 as an average and standard deviation
of two measurements, which shows good agreement with
previous work (5.5 × 10−5 s−1).20 This gives OAA a lifetime of
about 5 h in a dilute aqueous solution, such as a cloud droplet.
This is more than two orders of magnitude shorter than the
lifetime with respect to the oxidation by OH in cloud/fog
water (predicted Q = 0.005), so decarboxylation will be the
major removal pathway for aqueous OAA under these
conditions.
Effects of Ammonium in Weakly Acidic Solutions (pH

3 to 4). The measured pseudo-first-order rate constants (k)
and their dependence on salt concentrations are shown in
Figure 2. Here, we plot the rate constants as a function of
cation (ammonium or sodium) concentration rather than the
overall ionic strength because we observe that ammonium ion
concentration better correlates with changes in the observed
rate constants. An increase in ammonium sulfate linearly
increases the rate constant for the decarboxylation reaction,
with a slope of about 7 × 10−5 s−1 per molar ammonium. The

dependence of the rate on ammonium concentration appears
to reach an asymptote above about 2.7 M ammonium. The
lifetime of OAA at the point the rate levels off is about 1 h. We
have confirmed using the E-AIM model II (http://www.aim.
env.uea.ac.uk/aim/aim.php) that the activity of ammonium ion
increases smoothly with ammonium sulfate concentration over
this concentration range, so the saturation above 2.7 M is not
due to the changes in the activity of ammonium ions.
Figure 2 compares the measured rate constant for both

ammonium sulfate and ammonium chloride. The dependence
of the measured rate constant on the ammonium ion
concentration is the same regardless of whether the sulfate
or chloride salt of ammonium is used, so there are no strong
anion effects on decarboxylation. Control experiments were
performed based on previous work, which has shown some
atmospheric aqueous processes to be influenced by ionic
strength.8,45−47 However, the rate constant for decarboxylation
does not show a dependence on the salt concentration with the
addition of sodium sulfate. While we do not plot the data as a
function of ionic strength in Figure 2, the ionic strength
increases with increasing sodium sulfate concentration, so we
can conclude that the reaction is not appreciably affected by
ionic strength in this case.
We can explain the observed behavior of the effective rate

constant on [NH4
+] if we assume that ammonia present in

solution converts a small fraction of the carbonyl species into
imine (Scheme 1), which then decarboxylates at a much higher
rate (Scheme 2). The measured relative rate of decarboxylation
in the presence and absence of dissolved ammonia in the limit
of a rapid imine−carbonyl equilibrium can be expressed as
follows

=
[ ] + [ ]

[ ]

≈ +
[ ]

k k

k

k K

k

rate

rate

imine carbonyl

carbonyl

1
NH

with NH

without NH

imine carbonyl

carbonyl

imine eq 3

carbonyl

3

3

(2)

Figure 2. Pseudo-first-order rate constants for the decay of OAA’s absorbance peak at 260 nm as a function of cation concentration (ammonium
concentration for ammonium sulfate and ammonium chloride; sodium concentration for sodium sulfate). The data for ammonium sulfate are
shown in red, ammonium chloride in black, and sodium sulfate in blue. Error bars represent standard deviations computed from the individual fits.
As the temperature and pH were not intentionally fixed, some spread in the rate constants obtained may be expected due to variations in the room
temperature or differences in the solution pH. This particularly applies when comparing the ammonium sulfate (pH = 3.7 ± 0.3) and ammonium
chloride conditions (pH = 3.0 ± 0.3). See Table S1 for more detailed information on the pH of individual experimental trials.
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Here, [carbonyl] is the starting concentration of OAA, [imine]
is the concentration of imine assumed to be a minority species
in solution ([imine]≪ [carbonyl]), kcarbonyl is the rate constant
for decarboxylation from the carbonyl species (measured to be
5.24 × 10−5 s−1), kimine is the unknown rate constant for
decarboxylation from the imine species, and Keq is the
equilibrium constant between the imine and carbonyl species.

= [ ]
[ ][ ]

K
imine

carbonyl NHeq
3 (3)

Ammonia is a minor species in solution under acidic
conditions, but its concentration can be calculated from the
acid ionization constant Ka of the ammonium ion

=
[ ][ ]

[ ]
= ×

+

+
−K

H O NH
NH

5.6 10a
3 3

4

10

(4)

Combining these equations results in a predicted propor-
tionality of the relative decarboxylation rate on the ammonium
ion concentration

= + ×
[ ]

[ ]

+

+

k K

k
Krate

rate
1

NH
H O

with NH

without NH

imine eq

carbonyl

a 4

3

3

3 (5)

This can be related to the pseudo-first-order rate constant
shown in Figure 2

= + ×
[ ]

[ ]

+

+k k k K
K NH

H Oeffective carbonyl imine eq
a 4

3 (6)

which is consistent with the observed linear dependence on
[NH4

+] below [NH4
+] ≈ 2.7 M. The linearity breaks down at

higher concentrations, likely because the equations of
equilibrium, eqs 3 and/or 4, no longer work at high ionic
strengths. It is also possible that our assumption of the rapid
equilibrium between imine and carbonyl is not valid, which
would contribute to the nonexponential decay of absorbance
shown in Figures S1−S3.
Effects of Ammonium in Highly Acidic Solutions (pH

near or Less Than 1). Pseudo-first-order rate constants were
also measured for solutions of OAA with varying concen-
trations of ammonium bisulfate, shown in Table 1. These

experiments showed much slower rates of decarboxylation. At
these low pH values, there is a strong contribution by the gem-
diol form of OAA,20 which should decrease the decarbox-
ylation rate because the most likely reaction intermediate
requires the keto form.24 In addition, the rate is suppressed by
the low concentration of ammonia needed to produce the
imine, resulting in anticorrelation between the effective rate
constant and the hydronium ion concentration (eq 6). As a
control experiment, we measured the decarboxylation rate of
OAA in an aqueous solution acidified to pH 1.0 with sulfuric

acid in the absence of ammonium and found a lifetime of 63.7
h. This is longer than for the solution containing ammonia at
the same pH 1.0 (45.2 h), showing that ammonia does still
catalyze the decarboxylation even at these highly acidic pHs.
However, the catalytic effect of ammonia is not strong enough
to counteract the suppression of the decarboxylation rate by
the increased acidity.
Although the gem-diol reacts more readily with the OH

radical than the keto form of OAA, decarboxylation is still the
faster process at an OH concentration of 10−15 M, with
branching ratio Q ranging from 0.042 for 0.5 M ammonium
bisulfate to 0.14 for 2.0 M ammonium bisulfate. If particle OH
concentrations are higher, for instance 10−12 M as suggested by
Ervens et al. in their 2011 review,48 OH oxidation lifetimes
would be much shorter, and the branching ratios would shift to
42 for 0.5 M ammonium bisulfate and 140 for 2.0 M
ammonium bisulfate. The importance of OAA’s decarbox-
ylation reaction will, therefore, be highly OH-concentration
dependent under acidic conditions, as acidity greatly decreases
the decarboxylation rate.

Electronic Structure Calculations. Two possible reaction
pathways for the ammonium-catalyzed decarboxylation of
OAA are presented in Figure 3, one starting from the imine

form and one starting from the enamine form of the reaction
intermediate. Because most of our experiments were
conducted at pH 3 to 4, which is higher than the pKa at
carbon 1 and lower than the pKa at carbon 4, we began our
simulations with the monodeprotonated form of OAA as this
should be the majority species in solution. To determine which
of these pathways is more thermodynamically favorable, the
stability of both compounds was compared to that of the
decarboxylation enamine product. In the gas phase, the starting
enamine species has a lower free energy (5 kcal/mol) than the
imine (7 kcal/mol) relative to the product. However, the
energy order switches in the aqueous phase (14 kcal/mol for
the imine vs 9 kcal/mol for the enamine). In both the gas and
aqueous phases, the reaction is predicted to be exergonic.
Figure 4 shows the energy diagrams for the ammonium-

catalyzed and uncatalyzed decarboxylation processes in the gas

Table 1. Data from Individual Decarboxylation Reactions in
the Presence of Ammonium Bisulfate

ammonium bisulfate
concentration (M)

solution
pH rate constant (s−1)

lifetime
(h)

0 (H2SO4 added) 1.0 (4.36 ± 0.04) × 10−6 63.7
0.5 1.3 (8.05 ± 0.12) × 10−6 35.5
0.8 1.0 (6.15 ± 0.10) × 10−6 45.2
1.5 0.4 (4.49 ± 0.03) × 10−6 62.0
2.0 0.2 (2.37 ± 0.04) × 10−6 117

Figure 3. Electronic energies of species likely involved in the
ammonium-catalyzed decarboxylation of OAA. The reference energy
of the product was set to 0 kcal/mol, and the reference energy of the
imine and enamine species were calculated accordingly. Values
without and with parentheses are the relative free energies in the
aqueous phase and the gas phase, respectively. All energies were
calculated at the PBE0/TZVPP level and reported in kcal/mol.
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and aqueous phases. Our calculations found the transition state
for the uncatalyzed decarboxylation is stabilized by the
formation of a six-membered ring as shown in Scheme 2 and
Figure 4, in agreement with previous theoretical studies on the
uncatalyzed decarboxylation of OAA and related mole-
cules.24,49,50 Our calculated activation energy of 32 kcal/mol
for the aqueous phase uncatalyzed reaction is higher than the
experimentally determined activation energy of 23.6 kcal/mol
reported by Ito et al.,27 but still within a range expected of our
lower target accuracy. Our calculated energy barriers may be
high because we did not allow for tunneling in our calculations.
In the catalyzed reaction, the decarboxylation proceeds from
the imine form, and an analogous six-membered ring is formed
for the ammonium-catalyzed transition state (also shown in
Figure 4). The activation energy of the ammonium-catalyzed
decarboxylation is significantly lower than that of the
uncatalyzed decarboxylation in both the gas and aqueous
phases, which is consistent with our relative experimental
decarboxylation rates. Replacing OAA’s carbonyl with an imine
lowers the activation energy for decarboxylation, leading to
shorter lifetimes in solutions containing ammonium. Compar-
ing the gas and aqueous phase energy levels, it can also be seen
from Figure 4 that the solvation effect of water stabilizes all the
species except for the uncatalyzed transition state.
We used the Curtin−Hammett principle to calculate the

relative free energies of the transition states (ΔΔG⧧).51

ΔΔ = Δ − Δ + Δ °‡ ‡ ‡G G G Gcarbonyl imine eq (7)

ΔGcarbonyl
⧧ and ΔGimine

⧧ are the activation energies for
decarboxylation from the carbonyl and imine, and ΔGeq° is
the free energy of the carbonyl and imine equilibrium
(assumed to be achieved faster than the time scale of the
decarboxylation process). The gas-phase theoretical value of
ΔΔG⧧ is 14 kcal/mol. Calculating ΔΔG⧧ while including the
dielectric constant of water to represent the aqueous phase
gives 24 kcal/mol.
The Curtin−Hammett principle also makes it possible to

estimate ΔΔG⧧ from our experimental results using the
following equation

= ΔΔ ‡k K

k
e G RTimine eq

carbonyl

/

(8)

Using eq 6, we determined kimineKeq = 12.5 at pH of 4 (see
Table S1 for experimental pH values) from the experimentally
determined slope in Figure 2. Inserting this value into eq 8,
along with the measured kcarbonyl rate constant, gave us an
experimental ΔΔG⧧ value of about 7.3 kcal/mol. The
experimentally derived value is considerably lower than the
theoretical value suggesting that the calculation overestimates
the barrier height for the carbonyl species (by about 8 kcal/
mol as discussed above) but underestimates the barrier height
for the imine species. It is also possible that other forms of
OAA shown in Scheme 2 can decarboxylate making the direct
comparison between the theory and experiment more
challenging. Despite these quantitative discrepancies, which
may in part be due to the neglect of proton tunneling on the
computed barriers, the computations support the experimental
observations by suggesting that the decarboxylation reaction
proceeds more efficiently along the catalyzed pathway due to a
lower transition-state energy along this pathway.

Effect of Ionic Strength on the Initial Absorbance
Spectra. It has been demonstrated that increasing salt

Figure 4. (a) Select stationary points of the uncatalyzed (black) and
ammonium-catalyzed (blue) decarboxylation reaction of OAA. Values
without and with parentheses are the relative free energies with
COSMO (representing the aqueous phase) and without COSMO
(representing the gas phase), respectively. (b) Select stationary points
of the uncatalyzed decarboxylation of OAA without COSMO (gas
phase) shown in blue and with COSMO (aqueous phase) shown in
black. (c) Select stationary points of the ammonium-catalyzed
decarboxylation of OAA without COSMO (gas phase) shown in
blue and with COSMO (aqueous phase) shown in black. All energies
were calculated at the PBE0/TZVPP level and reported in kcal/mol.
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concentrations can affect the absorption spectra of aqueous
molecules and impact their direct photolysis rates.45,46,52,53

This prompted us to examine the effect of the added salts on
the initial absorption spectrum of OAA before the decarbox-
ylation (Figures S4−S7).
Under all conditions, the addition of small concentrations

(less than 1 M) of salts resulted in an increase in the height of
the main absorption peak at 260 nm. However, further
addition of salt decreased the 260 nm absorption. The decrease
holds true for the solutions containing sodium sulfate as well as
for the solutions containing ammonium, so we do not believe it
is attributable to faster decarboxylation with ammonium. This
effect was not observed in previous studies on pyruvic acid45,52

(another atmospherically important keto-acid and the product
of the OAA decarboxylation) and is likely a result of changing
OAA’s complex equilibrium of species in solution. Since the
enol form is the major absorbing species for OAA,20 any
change in the enol concentration will change the absorption
intensity. Other single-molecule experiments have shown that
salts can affect the absorbance spectra by changing the ratios of
species present in solution,46,52 although these other studies
have been on molecules with a less complex set of forms at
equilibrium. A decrease in the relative enol concentration
explains why lowering the pH of the solutions (under
ammonium bisulfate and sulfuric acid conditions) significantly
decreased the main absorption peak, as there is a greater
fraction of gem-diol and a lower fraction of enol present under
acidic conditions.20 An additional consequence of increased
acidity is reduced absorption above 300 nm. OAA will absorb
less of the sun’s energy under very acidic conditions (pH near
or less than 1) than at more moderately acidic pHs, which may
affect its photochemistry.
Another interesting effect is the growth of a shoulder on the

main absorption peak with the addition of ammonium sulfate
(Figure S4), providing more absorption of tropospherically
relevant wavelengths. This shoulder, characterized by an
increase in absorbance between 270 and 315 nm, is
attributable to the formation of an enamine,54 which would
be particularly interesting if the enamine form is not active in
the decarboxylation process as could be the case based on our
and previous calculations.24−26 Therefore, enamine formation
may be a potential pathway for direct photolysis to compete
with OAA’s decarboxylation. The enamine peak is only visible
at pH values above about 3.5, as demonstrated by the
ammonium chloride-containing absorbance spectra (Figure
S6). Since ammonium chloride is more acidic than ammonium
sulfate or sodium sulfate, the ammonium chloride solutions
were generally near pH 3 and the enamine peak was not
present. However, when a drop of 1 N potassium hydroxide
was added to the sample solution, the pH changed from ∼3 to
∼4 and the enamine band became visible. It is clear from the
comparison of the initial absorbance spectra that pH, ionic
strength, and ionic species can alter the absorption spectrum of
OAA significantly, and potentially affect its direct photolysis
rate.

■ CONCLUSIONS
The decarboxylation rate of OAA was observed in solutions of
ammonium and sulfate salts at varying concentrations and
compared to the reaction rate in pure water, and electronic
structure calculations were performed to validate our
experimental results. At weakly acidic pH values, the rate at
which OAA was converted to pyruvic acid linearly increased

with the addition of ammonium up to about 2.7 M ammonium
but had no further observable change in the rate at higher
ammonium concentrations. At pH values near and less than 1,
the decarboxylation reaction rate was reduced by about an
order of magnitude, although ammonium still catalyzed the
reaction. Salts that did not contain ammonium did not
accelerate the observed reaction. The DFT calculations
performed suggest that the energy barrier for decarboxylation
is significantly lower from the imine (after reaction with
ammonium) than from the uncatalyzed carbonyl form: 11
kcal/mol compared to 32 kcal/mol.
When decarboxylation lifetimes were compared to the

lifetimes of OAA with respect to OH oxidation under
corresponding atmospheric conditions, decarboxylation was
found to be dominant for nearly all cases. These results suggest
that the lifetime of OAA will be highly dependent on the
aqueous system in which it is dissolved. In dilute solutions
(such as cloud water) and aerosols with low ammonium
concentrations, decarboxylation reactions of the type studied
here will be ammonium (or amine) concentration-dependent,
but the exact ammonium concentration will not be as
important in deliquescent particles in cases where the
ammonium concentration is sufficiently high. At highly acidic
pH values, the importance of decarboxylation will depend on
the OH concentration, but decarboxylation is still likely to be
the dominant removal pathway. The decarboxylation lifetimes
calculated here can be summarized as follows: 5 h in dilute
water/weakly acidic water without ammonium ions, less than 5
h and as short as 1 h in water neutralized by ammonium, and
tens of hours in more acidic waters.
Decarboxylation and OH oxidation do not exhaustively

describe all possible fates for OAA in atmospheric water. For
instance, reactions between carboxylic acids and ammonium or
protonated amines have been shown to contribute to
nanoparticle growth.55 Formation of a carboxylate salt of this
type with the carboxylic acid at OAA’s carbon 4 would inhibit
the decarboxylation pathway shown in Scheme 2, suppressing
decarboxylation in freshly nucleated particles. Sulfate-ester-
ification may also occur in sulfate-containing atmospheric
solutions, particularly at low pH values.56 The methods
presented here do not allow us to differentiate sulfate-
esterification from decarboxylation under our highly acidic
conditions where sulfate-esterification is expected to gain
importance. However, formation of sulfate esters has been
shown to result from the reactions of epoxides, while their
formation from the reactions of alcohols (e.g., the enol form of
OAA) is kinetically unfavorable under atmospheric con-
ditions.57,58 Finally, small ketone-containing molecules can
undergo aldol condensation catalyzed by the presence of
ammonium,59 which could also compete with decarboxylation.
The rate of aldol condensation has not been measured for
OAA, so we cannot directly compare the lifetimes of OAA with
respect to decarboxylation and aldol condensation. However,
rates of aldol condensation for other small carbonyl
compounds are on the order of 10−5 to 10−7 s−1one to
three orders of magnitude slower than the decarboxylation of
OAA is predicted to be under similar conditions.13 We,
therefore, expect decarboxylation to be the most important
process for OAA in atmospheric particles containing
ammonium.
We also expect decarboxylation to be an important removal

pathway for other 3-oxocarboxylic acids, although the reactivity
of OAA may not translate directly. Other 3-oxocarboxylic
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acids, such as acetoacetic acid and α,α-dimethylacetoacetic
acid, have decarboxylation rates of the same order of
magnitude as OAA in pure water,60,61 and we expect
ammonium salts to catalyze the decarboxylation reactions of
other molecules similarly. However, the OH reactivity of these
other molecules may differ from OAA. OAA has an especially
unreactive keto form as a result of its structure (it only has one
carbon where hydrogen atoms can be abstracted by OH
radicals). However, it also has a strong tendency to form a gem-
diol (which reacts more quickly with OH) and exists as an enol
in small abundances (which reacts very readily with OH).
Other molecules will likely have a more OH-reactive keto
form, be less likely to form a gem-diol, and may not have an
enol form. It will be useful for future work to determine if/how
the structure of 3-oxocarboxylic acids affects the ammonium-
catalyzed decarboxylation, and if OH oxidation becomes more
important than decarboxylation for other 3-oxocarboxylic
acids.
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