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ABSTRACT: To predict important secondary organic aerosol (SOA) properties, information
on viscosity or diffusion rates within SOA is needed. Ozonolysis of β-caryophyllene is an
important SOA source; however, very few viscosity or diffusion rate measurements have been
performed for this SOA type and none as a function of relative humidity (RH). In this study, we
measured viscosity as a function of RH for SOA generated from the ozonolysis of β-
caryophyllene using the poke-flow technique. At an RH of 0 and 48%, the viscosity was between
6.9 × 105 and 2.4 × 107 Pa s, and between 1.3 × 103 and 5.6 × 104 Pa s, respectively. Based on
these viscosities and the fractional Stokes−Einstein equation, characteristic mixing timescales of
organics within 200 nm β-caryophyllene SOA particles range from ∼0.2 h at 0% RH to <3 s at 48% RH, suggesting that these
particles should be well-mixed under most conditions in the lower atmosphere. The chemical composition of the SOA was also
determined using nano-desorption electrospray ionization mass spectrometry. The measured chemical composition and the method
of DeRieux et al. (ACP, 2018) were used to predict the viscosity of β-caryophyllene SOA. If the mass spectra peak abundances were
adjusted to account for the sensitivity of the electrospray ionization to larger molecular weight components, the predicted viscosity
overlapped with the measured viscosity at 0% RH, while the predicted viscosities at 15−48% RH were slightly higher than the
measured viscosities. The measured viscosities also overlapped with viscosity predictions based on a simple mole-fraction based
Arrhenius mixing rule.
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1. INTRODUCTION

Secondary organic aerosol (SOA) is formed in the atmosphere
when volatile organic compounds (VOCs) from biogenic and
anthropogenic sources are oxidized followed by partitioning of
the reaction products to the particle phase1 or multiphase
reactions of the oxidation products.2 On a global scale, biogenic
VOCs are the dominant contributors to SOA.1,3,4 The three
main classes of biogenic VOCs important for SOA formation are
isoprene, monoterpenes, and sesquiterpenes.4 A recent
modeling study showed that the global burden of SOA increased
by 48% relative to the base case when sesquiterpenes were
included in the model.5 Field measurements and modeling
studies have also illustrated that sesquiterpenes can contribute
significantly to atmospheric SOA.6−9 Examples of atmospheri-
cally relevant sesquiterpenes include β-caryophyllene, α-
cedrene, α-humulene, and longifolene.10,11

SOA is important because it can impact the Earth’s climate
directly, by scattering incoming solar radiation, and indirectly,
by serving as nuclei for cloud droplets and ice crystals.12−15 SOA
can also impact air quality by reducing visibility and negatively
impacting health.16−18 To predict important properties of SOA
in the atmosphere, information on the diffusion rates of organics

within SOA is needed. For example, diffusion rates of organics
within particles affect the mass and size distribution of SOA19−26

and the long-range transport of pollutants such as polycyclic
aromatic hydrocarbons in the atmosphere.27−31 In addition,
diffusion rates can affect rates andmechanisms of photochemical
and multiphase reactions within SOA.19,32−41

Diffusion rates of organics within SOA or SOA proxies have
been determined in some studies by tracking the diffusion of
fluorescent probe molecules within SOA or their proxies42−46

and bymeasuring of evaporation rates of organic molecules from
SOA or SOA proxies.27,47−49 In cases where diffusion rates of
organics have not been measured, they can be estimated from
viscosity measurements using the Stokes−Einstein equa-
tion43,48,50−52 or the fractional Stokes−Einstein equation.43,44,48
A challenging aspect of measuring diffusion rates and viscosity
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within SOA is the low amount of material available for
experiments, which precludes the use of traditional methods.53

Recently, Shiraiwa et al.,54 DeRieux et al.,55 Gervasi et al.,56

and Li et al.57 developedmethods for predicting the viscosities of
SOA from its chemical composition, which can be used with
chemical transport models to predict viscosity of atmospheric
SOA.54,58 Thesemethods have been used to predict the viscosity
and glass transition temperatures of several types of SOA
(isoprene SOA, α-pinene SOA, toluene SOA, and ambient
SOA).26,55,56,59−65 However, the accuracy of these methods for
predicting the viscosity of SOA has only been tested in a few
cases, and the accuracy of these methods has never been tested
for sesquiterpene SOA.
The viscosity of SOA as a function of RH can also be predicted

using mixing rules and measured viscosities of water and dry
SOA.56,66−68 Gervasi et al.56 showed that a mole-fraction based
mixing rule is the best choice among simple mixing rules for
predicting viscosity in a binary aqueous system. However, the
accuracy of mixing rules for predicting the viscosity of SOA as a
function of RH has only been tested in a few cases.56,67,68

Only two studies have reported diffusion rates or viscosities
within sesquiterpene SOA. Zhao et al.49 measured a diffusion
coefficient of 3 × 10−19 m2 s−1 under dry conditions of 2-
ethylhexyl nitrate within SOA generated from α-cedrene
ozonolysis. Champion et al.69 measured viscosities under dry
conditions of SOA generated from β-caryophyllene photo-
oxidation. What is currently missing are measurements of
diffusion rates or viscosities within sesquiterpene SOA as a
function of relative humidity (RH). Such RH-dependent
measurements are critical, since RH varies from 0 to over
100% in the atmosphere and viscosity and diffusion rates have a
strong dependence on RH.70

To address the knowledge gaps mentioned above, we
measured viscosity as a function of RH for SOA generated via
ozonolysis of β-caryophyllene (see Figure 1 for the chemical

structure of β-caryophyllene). The measured viscosities and the
fractional Stokes−Einstein relation were used to estimate
characteristic mixing timescales of organic molecules within β-
caryophyllene SOA for typical RH conditions found in the
planetary boundary layer (the region of the atmosphere between
the Earth’s surface and approximately 1 km in height). In
addition to measuring viscosity, we also measured the chemical
composition of the SOA using high-resolution mass spectrom-
etry with three different types of direct-infusion ionization
sources. The chemical composition and the measured RH-
dependent viscosities for β-caryophyllene SOA were used to test
the accuracy of the parameterization from DeRieux et al.55 for
predicting viscosities of β-caryophyllene SOA. Finally, we
evaluated the ability of a simple mole-fraction based Arrhenius
mixing rule to predict the viscosity of the β-caryophyllene SOA

as a function of RH from knowledge of the viscosity of water and
the dry SOA.

2. EXPERIMENTAL SECTION
2.1. SOA Generation. SOA was generated in an environ-

mental chamber at the University of British Columbia via dark
ozonolysis of β-caryophyllene. The chamber was based on the
design by Parsons et al.71 and consisted of a 1.8 m3 Teflon bag
(Ingeniven) housed in a reflective aluminum enclosure (Figure
S1). The enclosure had 24UV lights (40W Sylvania black lights,
peak UV wavelength of ∼360 nm) mounted on the inside of the
enclosure for photochemical studies; however, the lamps were
not used in the current study except for cleaning the Teflon bag.
The chamber bag was periodically cleaned by passing dry air,
ozone (1.2 ppm), and water vapor through the chamber with the
UV lights on. Particles were continuously generated and
collected by running the environmental chamber in a
continuous-flow mode, similar to other continuous-flow
environmental chambers.72−75 The flow rate into and out of
the chamber was ∼18.2 L min−1, resulting in a calculated
residence time of 1.7 h, consistent with residence time
measurements (Figure S2).
A zero-air generator (Aadco 737) provided dry and

hydrocarbon-free air for SOA generation. The RH of the air
from the generator was <1% based on measurements with a
humidity meter (Vaisala HMT 330). Ozone was generated
externally to the chamber by flowing 0.5−1 Lmin−1 of the dry air
through an ozone generator (Jelight 600). Amixture of 2 wt % β-
caryophyllene (Sigma-Aldrich, ≥98%) was prepared in 2-
butanol (Sigma-Aldrich, ≥99% purity) and the resulting
solution was continuously added (flow rate of 25 μL h−1) with
a syringe pump (Cole-Parmer model 100) to a round-bottom
flask heated to 110 °C. A flow of 17.2−17.7 Lmin−1 of the dry air
was passed through the heated flask and carried the β-
caryophyllene and 2-butanol vapors into the chamber. The 2-
butanol was added to the chamber as a scavenger of OH radicals,
which can be produced during some reaction pathways for the
ozonolysis of β-caryophyllene.76 The 2-butanol was estimated to
scavenge ∼84% of OH radicals produced in the chamber based
on the reaction rates of OH with 2-butanol and β-caryophyllene
(Supporting Information, Section S1).
Ozone and β-caryophyllene entered the chamber through two

separate 0.63 cm (outer diameter) tubes that had exits ∼0.2 cm
apart within the chamber to facilitate mixing. The concen-
trations of ozone and β-caryophyllene flowing into the chamber
were 400−1200 and 40 ppb, respectively. After SOA formation,
aerosols exited the chamber through a 0.63 cm (outer diameter)
tube ∼1 m away from the chamber inlets. Part of the exit flow
was sampled with an ozone detector (49i, Thermo Scientific,
USA). The remaining flow passed through an ozone denuder
(Ozone Solutions, ODS-1) and was sampled with either an
impactor to collect material for the viscosity and mass
spectrometry measurements or with a scanning mobility particle
sizer (SMPS) (TSI 3080 DMA and 3782 CPC) to measure the
number-diameter distribution of the SOA. From the number-
diameter distribution and an assumed SOA density of 990 kg
m−3,77 the mass concentration of the SOA in the chamber was
50−60 μg m−3.
To collect SOA for viscosity or mass spectrometry measure-

ments, the flow was sampled with a multiorifice single-stage
impactor (MSP Corporation) operated at a constant flow rate of
15 L min−1 and a cut size below 0.18 μm (aerodynamic particle
diameter). The sample collection time ranged from 16 to 24 h,

Figure 1. Chemical structure of β-caryophyllene.
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resulting in 0.7−1 mg of SOA collected per sample, assuming
100% collection efficiency. For the viscosity measurements,
SOA was collected on fluorinated glass coverslips coated with
Trichloro (1H,1H,2H,2H-perfluorooctyl) silane or FluoroPel
800 (Cytonix USA). For mass spectrometry measurements,
SOA was collected on PTFE filters (47 mm, Whatman).
2.2. Measurements of Particle Viscosity. The poke-flow

technique was used along with fluid simulations to determine
the viscosity of the collected SOA material at room temperature
(292−294 K). This technique, which is based, in part, on early
experiments byMurray et al.,78 has been described and validated
by Renbaum-Wolff et al.79 and Grayson et al.80 For these
experiments, the slides containing the SOA from the environ-
mental chamber were mounted in a flow cell coupled to an
optical microscope (Figure S3). The RHwithin the flow cell was
controlled with a humidified flow of ultrapure N2 (0.25−0.80 L
min−1). The RHwas measured with a chilled mirror hygrometer
(General Eastern model D-2), which was calibrated by
measuring the deliquescence relative humidity of ammonium
sulphate (80% RH based onMartin)81 and potassium carbonate
(43% RH based on Greenspan).82

In the poke-flow experiments, the particles were poked with a
needle (RS-6063, Roboz Surgical Store or 13561-20, Ted Pella
Company) attached to a micromanipulator. The needle was
coated with a hydrophobic film (Dursan coatings, SilcoTek USA
or Oilslip 110, Cytonix) to prevent SOA material from sticking
to the needle. The micromanipulator allowed the needle to be
moved in the x, y, and z direction. Prior to poking with the
needle, the SOA particles had a spherical-cap geometry. After
poking, the SOA material had a half-torus geometry and slowly
flowed to reduce its total surface energy (e.g., Figure 2). From
images recorded during the poke-flow experiments, we
determined the experimental flow time, τexp,flow, defined as the
time taken for the equivalent area diameter of the hole in the
half-torus geometry to decrease to 50% of its original diameter.
The equivalent area diameter of the hole in the half-torus

geometry was calculated using the following formula:83 d = (4A/
π)1/2, where d is the equivalent area diameter of the hole with
area A, determined from the images using Zen software (Zeiss)
or ImageJ.84

Prior to poking the SOA particles, the particles were
conditioned to the surrounding RH for 3−5, 5−25, 20, and
2−22 h for RH values of 48, 28, 15, and 0%, respectively (Table
S1). These conditioning times were a factor of 0.18−22 greater
than the estimated mixing times of water within the SOA
(Supporting Information S2 and Table S1). Viscosities were not
dependent on the conditioning times used (Figure S4). Based
on this information, we assume that the SOA was near
equilibrium with the gas-phase water vapor prior to poking the
particles for the viscosity measurements.
When the particles were conditioning to the surrounding RH,

semivolatile organic material could evaporate from the particles,
potentially leading to a change in the viscosity of the
particles.25,85,86 To determine if evaporation of semivolatile
organic material was important in the poke-flow experiments, a
newly collected SOA sample was added to the flow cell discussed
above and exposed to a dry flow of N2 gas (0.25 L min−1) for 24
h, and images were recorded every hour to quantify evaporation
of the SOA particles. In this experiment, the maximum change in
the 2-D projected area of the SOA particles was −1.4 ± 0.4%
(Figure 3). We conclude that the composition change due to
evaporation during the poke-flow experiments was minimal.
This is consistent with expectations since the volume of N2 gas
exposed to the particles in the poke-flow experiments (≲1.2 ×
103 L) was small compared to the volume of air sampled from
the environmental chamber when collecting SOA for the poke-
flow experiments (1.6 × 104 to 2.4 × 104 L).
The τexp,flow values determined in the poke-flow experiments

were converted to viscosities using fluid simulations of the SOA
material. The fluid simulations were carried out with the
Microfluidics Module (version 5.2a) within COMSOL. Details
are described in Grayson et al.87 In short, the flow of the SOA

Figure 2. Optical images of particles taken during poke-flow experiments at RH values of (a) 48, (b) 28, and (c) 0%. Images [a(1),b(1),c(1)]
correspond to images taken before the particle was poked. Images [a(2),b(2),c(2)] are images taken immediately after poking. Images
[a(3),b(3),c(3)] are taken during recovery and images [a(4),b(4),c(4)] are taken at τexp,flow where the equivalent area diameter of the hole has
decreased to 50% of its original size. The white scale bar in the prepoking images corresponds to 50 μm. The circle in the center of the particle in [b(1)]
is an optical effect due to the hemispherical shape.
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material was simulated using a laminar two-phase flow with a
moving mesh consisting of ∼5800 elements. The simulations
took into account the Navier−Stokes equation and the surface
tension of the SOA. Flow occurred in the simulations to
minimize the total surface energy of the system, similar to the
experiments. The initial geometry in the simulations was a half-
torus geometry (Figure S5a), consistent with the experiments. In
the simulations, conservative values for contact angle, surface
tension of the SOA, slip length (a measure of the resistance to
flow at the fluid−solid interface), and density of the SOA were
used (Table S2). From each simulation, a modeled flow time,
τmodel,flow, was determined, which is the time taken for the
diameter of the hole in the half-torus geometry to decrease to
50% of its original value (consistent with the definition of
τexp,flow). To determine viscosities from τexp,flow, the viscosity used
in the simulation was varied until τmodel,flow was within ∼1% of
τexp,flow.
2.3. Measurements of the Chemical Composition of

SOA Using Mass Spectrometry. High-resolution mass
spectrometry data of the collected samples were obtained in
the positive and negative ion mode separately using nano-
desorption electrospray ionization (nano-DESI),88 nano-elec-
trospray ionization (nano-ESI), and electrospray ionization
(ESI) sources attached to a Q-Exactive HF-X Orbitrap mass
spectrometer (Thermo Scientific) with a mass resolution of
∼1.7× 105 atm/z 400. Data were acquired from 80 to 1200m/z
in the full scan mode. A low mass calibration was performed
prior to analysis using commercial mass calibration solutions
(Thermo scientific, PI-88323 and PI-88324) in both positive
(+) and negative (−) ion modes, separately. A spray voltage of
(+ or −) 3.5 kV, a funnel RF level of 80, and a capillary
temperature of 250 °C were used in all ionization modes.
Samples were delivered using a syringe pump at 1 μL min−1

(nano-DESI), 2 μL min−1 (nano-ESI), and 5 μL min−1 (ESI).
Nitrogen gas (99.995% purity) flow rates used in the ESI source
include a sheath gas of 10−12 units and an auxiliary gas of 0−1
units. For nano-DESI, half of the PTFE filter (1/2 × 47 mm,
Whatman) of each sample was taped to a glass slide. A stable
solvent droplet (1:1; acetonitrile/water) was formed at a
juncture between the solvent capillary and spraying capillary.
The substrate containing the SOA sample was brought in
contact with the droplet using micromanipulators, and the
droplet was dragged over the sample while acquiring mass

spectra for approximately 2−3 min. In addition to the samples, a
solvent blank consisting of a clean substrate was analyzed
following the same procedure in both positive and negative
modes.
For nano-ESI and regular ESI, the remaining filter halves were

solvent-extracted with 2 mL of a 1:1 mixture of acetonitrile and
water under sonication for 15 min. The extracted solution was
then passed through a 0.45 μm, PTFE membrane syringe filter
(Fisherbrand) to remove any undissolved material. An addi-
tional 1 mL of solvent was passed through the PTFE membrane
filter and collected with the filtered extracts to limit the loss of
extracts on the filter surface. Data were acquired for
approximately 2 min for nano-ESI and ESI. A solvent blank (a
clean filter treated the same way as described above) was also
analyzed for nano-ESI and ESI in the positive and negative
mode.
The analysis procedure of the mass spectrometry data has

been described previously.89 Xcalibur was used to integrate
portions of the scan and save the mass spectra as raw files. Then,
the Decon2LS software program (https://omics.pnl.gov/
software/decontools-decon2ls) was used to extract peak
positions and intensities. Only peaks below m/z 700 were
considered in analysis because peaks at larger m/z values had
negligibly small abundances. Peaks that were present in the
solvent blank with a solvent/sample peak abundance ratio in an
excess of 0.1 were considered impurities and excluded from
further analysis. All positive ions were assigned to formulas
C1−40H2−80O0−35N0−3Na0−1

+ with a m/z accuracy of 0.001.
Protonation was the most common ionization mechanism in the
positive ion mode, although a small fraction of the ions were
monosodium adducts. Sodium adducts can form during direct
infusion electrospray ionization in the positive mode.90,91 All
negative ions were assigned to formulas C1−40H2−80O0−35N0−3

−

assuming that deprotonation was the only ionization mecha-
nism. Only closed-shell ions were permitted, and the elemental
ratios were constrained to be 0.30 <H/C < 2.25 and 0.00 <O/C
< 2.30 to ensure that elemental formula assignments were
physically reasonable. Peaks that could not be assigned with the
abovementioned constraints were assigned manually using the
MIDASmolecular calculator (https://nationalmaglab.org/user-
facilities/icr/icr-software). The 13C isotope and other obvious
impurities, signified by unreasonably high mass defects, were
examined and removed from the final dataset. The N-containing
species made up a small portion (<1%) of the total signal and
were therefore treated as impurities and excluded. The formulas
of the assigned ions were converted to the neutral formulas by
removing Na+, H+, or NH4

+, depending on the ionization
mechanism in the positive mode and adding a H in the case of
the negative mode. The assignments are reported in neutral
mass of each species. The datasets for the positive and negative
modes were aligned based on neutral mass and each mode was
normalized so the sum of the intensities over all masses in a
single mode would add up to one. Then the intensities were
averaged between the modes for each mass for the combined
dataset. All the peaks in the combined dataset were used to
predict the viscosity.

2.4. Predictions of the Viscosity of SOA fromMeasure-
ments of the Chemical Composition of the SOA. To
predict viscosity of the SOA from the mass spectra, we followed
the approach of DeRieux et al.55 First, the glass transition
temperature (Tg) of compound i was predicted from the mass
spectra using the following equation:55

Figure 3. Particle 2-D projected area as a function of time during
exposure to dry nitrogen flow with a secondary y-axis showing the
percent change in the projected particle area. The y-error bars
correspond to the uncertainty in the measurement of the particle area in
μm2. The straight line is a linear fit to the data and the shaded regions
are the 95% confidence intervals for that fit.
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= − + +

+ + (1)

where nC, nH, and nO are the number of carbon, hydrogen, and
oxygen atoms, respectively, of compound i. Values of the
coefficients [nC

0 , bC, bH, bCH, bO, and bCO] were [1.96, 61.99,
−113.33, 28.74, 0, and 0] for CH compounds and [12.13, 10.95,
−41.82, 21.61, 118.96, and −24.38] for CHO compounds.
Next, the Tg of the SOA under dry conditions (Tg,org) was

estimated using the Gordon−Taylor equation assuming a
Gordon−Taylor constant (kGT) of 1:70

T wT
i

i ig,org g,∑=
(2)

where wi is the mass fraction of compound i. Following DeRieux
et al.,55 we assumed that wi values were proportional to the
relative abundances in the combined mass spectra dataset, Ii (eq
3), which is a known limitation of this approach:55,92

w Ii i= (3)

Tg of organic−water mixtures (Tg,mix) was then calculated
using the Gordon−Taylor equation with a kGT of 2.5:

70,93
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where worg is the mass fraction of the SOA and Tg,H2O is the glass
transition temperature of water (136 K).94 The value of worg can
be calculated based on the mass concentration of water (mH2O)
and the organics (morg):

w
m

m morg
org

org H O2

=
+ (5)

Under humid conditions, mH2O was estimated using the
effective hygroscopicity parameter (κ) and eq 6:95

( )
m

m

1
a

H O
w org

org
12

w

κρ

ρ
=

−
(6)

where ρw and ρorg are the densities of water and the SOA and aw
is the water activity, which corresponds to RH/100. The density
of the SOA particles was assumed to be 990 kg m−377 and the
hygroscopicity parameter was assumed to be 0.04−0.001.96,97
Viscosity as a function of temperature (T) was then calculated

from Tg,mix using the Vogel−Tammann−Fulcher (VTF)
equation:55

Figure 4. Panel (a) shows the experimental flow time, τexp,flow, for poked particles as a function of RH. Panel (b) shows measured viscosities and
calculated diffusion coefficients and mixing times of organic molecules in a 200 nm particle. The x-error bars correspond to uncertainties in the RH
measurements and in panel (b), the y-error bars represent the upper and lower limits of the measured viscosities at each RH. The dotted line
corresponds to a mixing time of 1 h. Also included in panel (b) are literature viscosity values for toluene SOA.52 Pictures of common substances have
been added to panel (b) as points of reference per Koop et al. (2011). The tar pitch image is from the tar pitch experiment (image courtesy of
Wikimedia Commons, GNU Free Documentation License, University of Queensland, John Mainstone). Panels (c,d) show the RH and temperature
frequency distributions in January (black line) and July (red line) in the global planetary boundary layer (i.e., the planetary boundary layer in both the
northern and southern hemisphere) based on GEOS-Chem. RH and temperature conditions were only included if the monthly averaged
concentration of organic aerosol were greater than 0.5 μg m−3 at the surface based on the output of GEOS-Chem.46 Conditions where the organic
aerosol concentrations were <0.5 μg m−3 were excluded, as aerosols at low concentrations are expected to be of less importance to climate or visibility.
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eT D T T/0 f 0η η= ∞
−

(7)

where Df represents the fragility parameter and η∞ represents
the viscosity at infinite temperature assumed to be 10−5 Pa s.98,99

T0 is the Vogel temperature calculated as T
T

D0
39.17

39.17
g,mix

f
= + , which

is deduced from an assumed viscosity of 1012 Pa s at the glass
transition temperature.99 Df, which characterizes the deviation
of the temperature dependence of viscosity from an Arrhenius
behavior,98,100 was assumed to be 10 based on our previous
study.55 The value of Df is assumed to be independent of
RH.54,55,101,102 This assumption is consistent with previous
studies that found that the value ofDf in sucrose and citric acid is
independent of water content, except for anhydrous su-
crose.99,103,104

2.5. Prediction of Viscosity Using a Mole-Fraction
Based Arrhenius Mixing Rule. The viscosities of SOA as a
function of RH can also be estimated using the measured
viscosities of pure water and dry SOA and mixing rules. In the
following, we test a mole-fraction based Arrhenius mixing rule
for predicting the viscosity of β-caryophyllene SOA as a function
of RH. This mixing rule is expressed for our system using the
following equation:105

x xln( ) ln( ) ln( )org,wet org org,dry H O H O2 2
η η η= + (8)

where ηorg,wet is the viscosity of the SOA and water mixture,
ηorg,dry is the viscosity of the dry SOA, ηH2O is the viscosity of pure
water, xorg is the mole fraction of SOA in the SOA−water
mixture, and xH2O is the mole fraction of water in the SOA−
water mixture. For the viscosity of the dry SOA, we used 4.6 ×
106 Pa s (which is based on our experimental data), and for the
viscosity of pure water, we used 10−3 Pa s.106 The mole fractions
of SOA and water were calculated from the weight fractions of
SOA and water using eq 9:
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org

org
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H2O
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+

(9)

where worg and wH2O are the weight fractions of the SOA and

water, respectively, andMorg andMH2O are the molecular weights
of the SOA and water, respectively. For the average molecular
weight of the SOA, we used 271.0 g mol−1 based on the mass
spectra and eq 14 (see below). The weight fraction of the SOA
and water was estimated from the water activity using eq 5 and 6,
an SOA density of 990 kg m−3,77 and CCN-derived kappa values
of 0.04−0.001 for SOA generated from the ozonolysis of β-
caryophyllene in the presence of an OH scavenger.96,97

3. RESULTS AND DISCUSSION
3.1. Viscosity as a Function of RH. Values of τexp,flow as a

function of RH were determined from each of the poke-flow
measurements (Figure 4a). The τexp,flow values increased from
∼48 s at 48% RH to ∼2.5 h at 0% RH. Using the τexp,flow values
and the particle dimensions, upper and lower limits for the
viscosities were determined from fluid-flow simulations (Figure
4b). At an RH of 0%, the viscosity was between 6.9× 105 and 2.4
× 107 Pa s and at an RH of 48%, the viscosity was between 1.3 ×
103 and 5.6 × 104 Pa s. Some other types of SOA previously
investigated with the poke-flow technique were more sensitive
to RH over the same RH range. For example, the viscosity of
SOA generated by the photo-oxidation of toluene is >108 Pa s at

17% RH but ∼103 to 104 Pa s at ∼50% RH (Figure 4b).52 The
weaker dependence on RH in the current experiments compared
to toluene SOA is most likely because β-caryophyllene SOA has
a lower hygroscopicity (κ = 0.04−0.001)96,97 than toluene SOA
(κ = 0.1−0.25).107 Water acts as a plasticizer for SOA (i.e., as
water content increases, viscosity decreases)70 and the smaller
hygroscopicity of β-caryophyllene SOA likely translates into a
weaker dependence of viscosity on RH over the range of RH
values investigated.
A few previous studies investigated particle rebound as a

function of RH for SOA from sesquiterpenes.37,108 The rebound
studies were used to infer whether the SOA was in a liquid
(viscosity≲ 102 Pa s) or a nonliquid state (viscosity≳ 102 Pa s).
Li et al.37 inferred that the nonliquid-to-liquid transition
occurred at an RH > 90% for SOA generated by the photo-
oxidation of β-caryophyllene. Pajunoja et al.108 inferred that the
transition occurred at an RH of 70−90% for SOA from
longifolene photo-oxidation, with an O/C-dependent transition
RH. These studies are consistent with the current results.

3.2. Diffusion Coefficients and Mixing Times of
Organic Molecules within β-Caryophyllene SOA as a
Function of RH. Diffusion coefficients of organic molecules
within SOA can be calculated from viscosity measurements
using the Stokes−Einstein equation43,48 or the fractional
Stokes−Einstein equation.43,44,48 A recent study showed that
diffusion coefficients predicted with the Stokes−Einstein
equation were in reasonable agreement with measured diffusion
coefficients in most cases when the radius of the diffusing
molecules (Rdiff) was greater than or equal to the radius of the
matrix molecules (Rmatrix) and when the viscosities were between
10−3 and 106 Pa s.44 A more recent study showed that the
fractional Stokes−Einstein equation was able to predict 98% of
observed diffusion coefficients roughly within the uncertainty of
the measurement for Rdiff/Rmatrix values ranging from 0.31 to
1.75 and viscosities ranging from 10−3 to 1010 Pa s. Based on
these findings, we used the fractional Stokes−Einstein equation
to predict diffusions of organic molecules within the SOA:109

D D0
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zzzz

η
η

= ×
ξ

(10)

where ξ is the fractional exponent, η is the viscosity, η0 is the
viscosity of pure water (10−3 Pa s at a temperature of 293 K), and
D0 is the diffusion coefficient in pure water, calculated using the
Stokes−Einstein equation:

D
kT

R60
0 diffπη
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where k is the Boltzmann constant,T is the temperature, andRdiff
is the radius of the diffusing molecule. We assumed a radius of
0.47 nm for the diffusing molecule, based on a molecular weight
of 254 g mol−1 for some common first-generation β-
caryophyllene ozonolysis products,110 a density of 990 kg
m−3,77 and an assumed spherical geometry of the diffusing
molecule. The value of ξ was calculated using eq 12:44
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where A corresponds to 0.73 and B corresponds to 1.79.44 A
value of 1 was assumed for Rdiff/Rmatrix. Based on the fractional
Stokes−Einstein equation, the diffusion coefficients ranged from
∼4.1× 10−16 m2 s−1 at 48%RH to∼1.8× 10−18 m2 s−1 at 0% RH
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(Figure 4b, secondary Y-axis). The diffusion coefficients
calculated using the fractional Stokes−Einstein equation
correspond to bulk diffusion coefficients. These diffusion
coefficients should be applicable to atmospheric particles that
have diameters greater than ∼0.1 μm,19,111 which covers the
majority of the mass of atmospheric particles. However, the
diffusion coefficients may not apply to particles with diameters
<0.1 μm as surface and confinement effects may become
important for these particle diameters.111−113

Diffusion coefficients were converted into characteristic
mixing timescales of organic molecules within 200 nm SOA
particles using eq 13:12

d

D4
p

mix

2

2τ
π

=
(13)

where τmix is the mixing time of the particle, dp is the diameter of
the particle, and D is the diffusion coefficient of the diffusing
molecule, calculated using eq 10. The mixing time corresponds
to the time it takes for the concentration of the diffusing
molecules at the center of the SOA particle to differ from the
equilibrium concentration by less than 1/e for nonreactive
partitioning. The SOA particle was assumed to have a diameter
of 200 nm, which is within the range of SOA particle sizes found
in the atmosphere.114−116 The calculated mixing times ranged
from∼0.2 h at 0% RH to <3 s at 48% RH (Figure 4b, secondary
Y-axis).
Chemical transport models typically assume that the mixing

times within SOA are less than ∼1 h.1 Based on our results, the
mixing time within a 200 nm β-caryophyllene SOA is <1 h at all
RHs when the temperature is 292−294 K (Figure 4b). Based on
previous calculations, the RH in the planetary boundary layer is
nearly always ≥10% RH when the organic aerosol concen-
trations are >0.5 μg m−3 at the surface (Figure 4c).117

Furthermore, the temperature in the planetary boundary layer
is most often 280−290 K when the organic aerosol
concentrations are >0.5 μg m−3 at the surface (Figure 4d).117

Hence, the mixing times within β-caryophyllene SOA are <1 h
for a large majority of RH and temperature conditions in the
planetary boundary layer when the organic aerosol concen-
trations are >0.5 μg m−3 at the surface. Conditions where the
organic aerosol concentrations were <0.5 μg m−3 were excluded,
as aerosols at low concentrations are expected to be of less
importance to climate or visibility.

One caveat to the discussion above is that the mass
concentration of the SOA generated in the environmental
chamber was 50−60 μg m−3, which is higher than typical mass
concentrations of biogenic SOA in the atmosphere.3,118

Previous studies have shown that for some types of SOA, the
viscosity, and hence mixing times, increases with a decrease in
mass concentration of SOA in the reactor.69,80,119 Reducing the
SOAmass concentration removes compounds with higher vapor
pressures from the particles.120 These higher vapor pressure
compounds have lower glass transition temperatures.54,55

Additional studies are needed to determine the effect of SOA
mass concentration on the viscosity of β-caryophyllene SOA.
Related to the mixing times shown in Figure 4b, Ye et al.121

investigated the mixing of semivolatile vapors from α-pinene
SOA and toluene SOA within β-caryophyllene SOA (formed by
ozonolysis, as in the current experiments). In these experiments,
β-caryophyllene SOA took up only a small amount of
semivolatile vapors (≤10% change in β-caryophyllene SOA
mass) over a period of 2 h at 50% RH. The authors suggested
two possible explanations for the limited uptake of the
semivolatile vapors: (1) diffusion-limited uptake and (2)
immiscibility (e.g., nonideality) of semivolatile vapors from α-
pinene SOA and toluene SOA within β-caryophyllene SOA.121

The size of SOA particles studied by Ye et al.121 ranged from 200
to 700 nm in diameter. Using the method discussed above, we
calculated the mixing times of organic molecules within 450 nm
β-caryophyllene SOA particles as a function of RH (Figure S6).
Based on these calculations, the mixing times of organic
molecules within a 450 nm β-caryophyllene SOA particle at 48%
RH are 2.3−62 s. These calculations suggested that the limited
uptake of semivolatile vapors from α-pinene SOA and toluene
SOA within β-caryophyllene SOA observed by Ye et al.121 was
due to immiscibility rather than diffusion-limited uptake.
However, Ye et al.121 used SOA generated with mass
concentrations of 3.4−6.4 μg m−3 compared to the mass
loading of 50−60 μg m−3 used in this study. Since viscosity can
increase with a decrease in SOA mass concentration, the SOA
studied by Ye et al.121 may have beenmore viscous than the SOA
in the current study, leading to longer mixing times than
calculated from our data.

3.3. Chemical Composition of the SOA Based on Mass
Spectrometry. The full mass spectra are shown in Figure S7,
and relative peak abundances from themass spectra are shown in
Figure 5 as a function of carbon number. β-Caryophyllene

Figure 5. Sum of intensities of all molecular formula assignments based on carbon number for three ionization techniques (ESI, nano-ESI, and nano-
DESI), which are normalized to the maximum intensity peak in each respective spectrum.
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(C15H24) is expected to produce mainly C14−C15 compounds
during ozonolysis, but smaller compounds resulting from more
extensive backbone fragmentation and larger compounds
resulting from oligomerization are also possible. We observed
that ESI and nano-ESI favored the detection of smaller
compounds compared to the nano-DESI. This effect is especially
noticeable in the positive ion-mode ESI data, manifesting itself
in unexpectedly high peak abundances in C5−C10 compounds.
In the negative ion-mode spectra, the peak abundance is also
shifted from the expected C14−C15 compounds in nano-DESI
to smaller compounds in ESI and nano-ESI. Even though
instrument conditions were optimized for each method, it is
possible that fewer compounds experienced in-source fragmen-
tation in nano-DESI than in other ionization modes. The
ionization mechanism for nano-DESI has been shown to be
better-suited for the detection of chemically labile compounds
compared to ESI.122,123 It has previously been found that
chemically labile compounds may dissociate in solution during
ESI-based analysis. Due to the shorter residence time of the
sample in the solvent during nano-DESI, this dissociation is
minimized.122 Therefore, for the remainder of the document, we
will focus on the nano-DESI results, which provide information
on a broader range of SOA compounds.
Shown in Figure 6 are nano-DESI mass spectra, with the five

most abundant peaks in the positive and negative mode

identified. Approximately 1000 peaks were observed in the
positive mode compared to 700 peaks observed in the negative
mode. β-Caryophyllene has two double bonds (Figure 1) and
attack by ozone on the more-reactive endocyclic double bond
will generally lead to ring-opening products retaining the C15
carbon number. Attack on the less-reactive exocyclic double
bond generally leads to C14 products. Indeed, the most-
abundant peaks in the positive ion-mode mass spectra were C14
and C15 species. It is common to observe C15H24On products in
mass spectra of oxidized sesquiterpenes.124,125 The major C15
products identified include C15H24O4 and C15H24O5, which have
been reported as first-generation ozonolysis products.110,126

Some of the major C14 products identified include C14H22O4,
C14H22O5, and C14H22O7, which have been reported as second-
generation ozonolysis products.110,126 The C14H22O9 product
was previously reported in Richters et al.127 as a highly oxidized
reaction product of β-caryophyllene ozonolysis formed via an
extended autoxidation pathway.
In addition to C14 and C15 species, other carbon numbers

were also observed, which result from fragmentation of Criegee

intermediates during ozonolysis, other radical-driven secondary
chemistry, and oligomerization processes occurring in the gas
and particle phase. The C11 product C11H18O3 has been
reported as a second-generation ozonolysis product of β-
caryophyllene.110,126 The C28 peak C28H42O14 has more carbon
atoms than β-caryophyllene, indicating the formation of
oligomers from β-caryophyllene oxidation products. Some
other major peaks include C9H14O4 and C16H24O5, which
have not been reported previously and are likely second- or
third-generation ozonolysis products of β-caryophyllene. These
two compounds have O/C ratios of 0.44 and 0.31, respectively,
which is consistent with O/C ratios of second-generation
products.110

3.4. Viscosity Predictions Based on the Measured
Chemical Composition. For viscosity predictions, we used the
nano-DESI mass spectrometry results, since this method of
ionization detected the widest spectrum of SOA compounds,
based on Figure 5. As mentioned in Section 2.4, we assumed that
the mass fraction of each compound was proportional to its
relative peak abundance in the combined mass spectra dataset
(eq 3).55,92 We found that predictions based on this assumption
and the nano-DESI results drastically overpredicted the viscosity
(Figure 7a). For example, under dry conditions, the predicted
viscosities were up to 6 orders of magnitude larger than the
measured viscosities.
ESI-based methods are known to be more sensitive to larger,

oligomeric compounds,128,129 and this may be the reason, at
least in part, for the discrepancy between the measured viscosity

Figure 6. Nano-DESI mass spectrum taken in the positive mode (red
spectrum) and negative mode (black spectrum). The signals were
normalized to the highest intensity in each respective mode. The five
most abundant peaks in each mode are labeled by the corresponding
neutral (unionized) molecular formulas.

Figure 7. Comparison of measured and predicted viscosities as a
function of RH. The x-error bars correspond to uncertainties in the RH
measurements, and the y-error bars correspond to the upper and lower
limits of viscosity at each RH. Panel (a) shows the viscosity predictions
using the averaged positive- and negative-ion mode mass spectrometry
data where it was assumed that the weight fraction of the individual
SOA species was proportional to the mass spectrum signal intensities
(eq 3). Panel (b) shows the viscosity predictions using the averaged
mass spectrometry data assuming a relation between weight fraction
and intensity given in eq 14.
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and predicted viscosity. To investigate if this may be important
to our studies, as a second step in our analysis, we used the
adjusted mass approach based on the work of Nguyen et al.129 to
predict the mass fraction of each compound in the SOA:

w
I

H C M/i
i

i i
=

× (14)

whereMi is the molecular weight of the compound, H/Ci is the
hydrogen-to-carbon ratio of the compound, and H/Ci × Mi is
the adjusted mass. This scaling was used to approximately
account for the impact of molecular weight and degree of
unsaturation (represented by the H/C ratio) on the ionization
efficiency of the individual compounds. This is the same relation
developed by Nguyen et al.129 based on the addition of
calibration standards to a realistic SOAmatrix, except Nguyen et
al.129 included a term to account for the limit of detection
(LOD) of the compounds, which was found to inversely
correlate with molecular weight and found to be small for
compounds when the adjusted mass was >200 Da. In the
absence of better information, we neglected the LOD term as
more than 90% of the compounds detected via mass
spectrometry have an adjusted mass >200 Da.
The viscosities predicted using eq 14 better overlapped with

the measured viscosities (Figure 7b). It is especially remarkable
that the predicted viscosity matches with the measured viscosity
at 0%RH, indicating that theTg parameterization and prediction
method (eqs 1 and 2) work well. While ESI-based methods
selectively ionize only oxidized species, the agreement implies
that nano-DESI is capable of detecting the majority of the
compounds present in β-caryophyllene SOA that contribute to
its viscosity. It also suggests that the poor agreement between
the measured viscosities and our initial predictions (assuming
linearity between wi and Ii) may be, in part, due to the enhanced
sensitivity of ESI methods to larger molecular weight
compounds. At RH values of 15−48%, the predicted viscosities
using eq 14 are still larger than the measured viscosities,
although the differences are much smaller than in Figure 7a.
These differences may be due to uncertainties in the parameters
or assumptions used to generate the predictions. Interestingly, in
our previous studies using toluene SOA and diesel fuel SOA, we
observed reasonable agreement between measured viscosities
and predictions when we assumed a linear relation (i.e., eq
3).55,92 To investigate this further, we have redone these
comparisons using eqs 3 and 14. The results show that using the
relation in eq 14 results in similar or improved predictions of the
viscosity compared to eq 3 for both the toluene SOA and diesel
fuel SOA (Figures S8 and S9), consistent with the trend
observed for β-caryophyllene SOA (although the difference in
the predicted results is not nearly as dramatic as for β-
caryophyllene SOA).
The ultimate dataset for viscosity predictions would be a full

roster of the actual (rather than estimated) mass fractions of all
SOA compounds. Because of the overwhelmingly large number
of SOA compounds and lack of appropriate calibration
standards, no existing experimental method can provide such a
dataset. However, our analysis suggests that an approximate
estimation of mass fractions based on eq 14 can work reasonably
well for the purposes of predicting material viscosity.
Specifically, we have shown that nano-DESI can be used with
eqs 1, 2, and 4−7 and the relation between wi and Ii shown in eq
14 to provide an improved prediction of viscosity for toluene

SOA, diesel fuel SOA, and β-caryophyllene SOA compared to
using the assumption in eq 3.

3.5. Viscosity Predictions Based on Mole-Fraction
Based Arrhenius Mixing Rule. The viscosities of SOA as a
function of RH were also estimated using a mole-fraction based
Arrhenius mixing rule (eq 8) and the measured viscosities of
pure water and dry SOA. For a viscosity of the dry SOA, we used
4.6 × 106 Pa s (which is consistent with our experimental data)
and for the viscosity of pure water, we used 10−3 Pa s.106

The predictions based on this approach overlapped with the
measured viscosities (Figure 8). This is consistent with the

recent studies by Gervasi et al.,56 who showed that a mole-
fraction based mixing rule is the best choice among simple
mixing rules for predicting viscosity in binary aqueous systems.
These predicted viscosities had large uncertainties for RH values
ranging from approximately 30 to 95%, mainly due to the large
uncertainty in the κ values used to predict the mole fraction of
water in the SOA. The predictions based on the chemical
composition and the method from DeRieux et al.55 (Figure 7)
also had large uncertainties at similar RH values for the same
reason. This highlights that accurate and precise measurements
of κ values for SOA are needed for predicting viscosities of SOA
as a function of RH.

4. SUMMARY AND CONCLUSIONS
Viscosity was measured as a function of RH for SOA generated
via the ozonolysis of β-caryophyllene. The viscosity was 1.3 ×
103 to 5.6 × 104 Pa s at 48% RH, and it increased to 6.9 × 105 to
2.4 × 107 Pa s at 0% RH, where the ranges correspond to
measurement and data analysis uncertainties. Diffusion
coefficients were calculated from the viscosities using the
fractional Stokes−Einstein equation and ranged from ∼4.1 ×
10−16 m2 s−1 at 48% RH to ∼1.8 × 10−18 m2 s−1 at 0% RH.
Mixing times of organic molecules within 200 nm SOA particles
were calculated from the diffusion coefficients and ranged from
<3 s at 48% RH to 0.2 h at 0% RH. Based on these values, mixing
times within 200 nm β-caryophyllene SOA are fast (<1 h) for
RH and temperatures typically found in the planetary boundary
layer.
The chemical composition of the SOA was determined with

nano-DESI mass spectrometry. The most-abundant peaks in the

Figure 8. Measured viscosities and predicted viscosities using a mole-
fraction based Arrhenius mixing rule. For the measurements, the x-error
bars correspond to uncertainties in the RH and the y-error bars
represent the upper and lower limits of the simulated viscosities at each
RH. The uncertainties in the predictions are due to uncertainties in the
hygroscopicity of the SOA. For the hygroscopicity, we used a range of
CCN-derived kappa values of 0.04−0.001.96,97
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mass spectra were C15 and C14 peaks, corresponding to the
first- and second-generation ozonolysis products. Another
abundant peak in the mass spectra was a C28 peak, likely the
result of dimerization of the β-caryophyllene oxidation products.
We note that ESI and nano-ESI favored the detection of smaller
compounds compared to nano-DESI, and the fact that relative
peak abundances from the three ionization methods do not fully
agree with each other highlights the difficulty of estimating
relative abundances of SOA compounds using direct infusion
methods. In this study, we assumed that nano-DESI provides the
most accurate information about SOA composition because it is
known to better detect labile compounds.
The viscosity data and the chemical composition from mass

spectrometry were used to test the accuracy of the method from
DeRieux et al.55 for predicting the viscosity of β-caryophyllene
SOA. Using raw peak nano-DESI abundances in the mass
spectra as substitutes of mass fractions led to a drastic
overprediction of the viscosity by up to 6 orders of magnitude
(depending on the RH). However, when the peak abundances
were adjusted to account for the sensitivity of the electrospray
ionization to larger molecular weight components using an
empirical relationship suggested by Nguyen et al.,129 the
predicted viscosities better overlapped with the measured
viscosities. Furthermore, the same method produced better or
similar predictions for our previous observations of viscosity of
toluene SOA and diesel fuel SOA. These results further highlight
the level of sensitivity of viscosity predictions to the method
used for relating peak abundances to relative concentrations in
direct infusion mass spectra.
We also tested the accuracy of a mole-fraction based

Arrhenius mixing rule for predicting viscosity as a function of
RH from the viscosity of water and the dry SOA. For this case,
the predictions overlapped with the measured data.
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(27) Zelenyuk, A.; Imre, D.; Berańek, J.; Abramson, E.; Wilson, J.;
Shrivastava, M. Synergy between Secondary Organic Aerosols and
Long-Range Transport of Polycyclic Aromatic Hydrocarbons. Environ.
Sci. Technol. 2012, 46, 12459−12466.
(28) Keyte, I. J.; Harrison, R. M.; Lammel, G. Chemical reactivity and
long-range transport potential of polycyclic aromatic hydrocarbons - a
review. Chem. Soc. Rev. 2013, 42, 9333−9391.
(29) Mu, Q.; Shiraiwa, M.; Octaviani, M.; Ma, N.; Ding, A.; Su, H.;
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(66) Centeno, G.; Sańchez-Reyna, G.; Ancheyta, J.; Muñoz, J. A. D.;
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Dommen, J.; Gysel, M.; Weingartner, E.; Baltensperger, U. CCN
activity and volatility of β-caryophyllene secondary organic aerosol.
Atmos. Chem. Phys. 2013, 13, 2283−2297.
(98) Angell, C. A. Relaxation in Liquids, Polymers and Plastic Crystals
- Strong/Fragile Patterns and Problems. J. Non-Cryst. Solids 1991, 131−
133, 13−31.
(99) Angell, C. A. Liquid Fragility and the Glass Transition in Water
and Aqueous Solutions. Chem. Rev. 2002, 102, 2627−2650.
(100) Rothfuss, N. E.; Petters, M. D. Influence of Functional Groups
on the Viscosity of Organic Aerosol. Environ. Sci. Technol. 2017, 51,
271−279.
(101)Marsh, A.; Petters, S. S.; Rothfuss, N. E.; Rovelli, G.; Song, Y. C.;
Reid, J. P.; Petters, M. D. Amorphous Phase State Diagrams and
Viscosity of Ternary Aqueous Organic/Organic and Inorganic/Organic
Mixtures. Phys. Chem. Chem. Phys. 2018, 20, 15086−15097.
(102) Rothfuss, N. E.; Petters, M. D. Characterization of the
Temperature and Humidity-Dependent Phase Diagram of Amorphous
Nanoscale Organic Aerosols. Phys. Chem. Chem. Phys. 2017, 19, 6532−
6545.
(103) Longinotti, M. P.; Corti, H. R. Viscosity of Concentrated
Sucrose and Trehalose Aqueous Solutions Including the Supercooled
Regime. J. Phys. Chem. Ref. Data 2008, 37, 1503−1515.
(104) Kasparoglu, S.; Li, Y.; Shiraiwa, M.; Petters, M. Toward Closure
between Predicted and Observed Particle Viscosity over a Wide Range
Temperature and Relative Humidity. Atmos. Chem. Phys. Discuss. 2020,
1−22.

ACS Earth and Space Chemistry http://pubs.acs.org/journal/aesccq Article

https://dx.doi.org/10.1021/acsearthspacechem.0c00296
ACS Earth Space Chem. 2021, 5, 305−318

317

https://dx.doi.org/10.1021/acs.analchem.8b05353
https://dx.doi.org/10.1021/acs.analchem.8b05353
https://dx.doi.org/10.1021/acs.jpca.6b07835
https://dx.doi.org/10.1021/acs.jpca.6b07835
https://dx.doi.org/10.1021/acs.estlett.9b00412
https://dx.doi.org/10.1021/acs.estlett.9b00412
https://dx.doi.org/10.1039/c1cp22617g
https://dx.doi.org/10.1039/c1cp22617g
https://dx.doi.org/10.1039/c1cp22617g
https://dx.doi.org/10.1039/c1cp22617g
https://dx.doi.org/10.1364/AO.50.000A90
https://dx.doi.org/10.1364/AO.50.000A90
https://dx.doi.org/10.1364/AO.50.000A90
https://dx.doi.org/10.5194/acp-9-2959-2009
https://dx.doi.org/10.5194/acp-9-2959-2009
https://dx.doi.org/10.1029/2007GL030390
https://dx.doi.org/10.1029/2007GL030390
https://dx.doi.org/10.1016/S1352-2310(99)00121-1
https://dx.doi.org/10.1016/S1352-2310(99)00121-1
https://dx.doi.org/10.1016/S1352-2310(99)00121-1
https://dx.doi.org/10.5194/acp-8-2073-2008
https://dx.doi.org/10.5194/acp-8-2073-2008
https://dx.doi.org/10.1021/ja0266060
https://dx.doi.org/10.1021/ja0266060
https://dx.doi.org/10.5194/acp-15-6035-2015
https://dx.doi.org/10.5194/acp-15-6035-2015
https://dx.doi.org/10.5194/acp-12-8575-2012
https://dx.doi.org/10.5194/acp-12-8575-2012
https://dx.doi.org/10.5194/acp-12-8575-2012
https://dx.doi.org/10.1073/pnas.1219548110
https://dx.doi.org/10.1073/pnas.1219548110
https://dx.doi.org/10.5194/acp-16-6027-2016
https://dx.doi.org/10.5194/acp-16-6027-2016
https://dx.doi.org/10.5194/acp-16-6027-2016
https://dx.doi.org/10.1021/cr990034t
https://dx.doi.org/10.1021/cr990034t
https://dx.doi.org/10.6028/jres.081A.011
https://dx.doi.org/10.6028/jres.081A.011
https://dx.doi.org/10.1038/nmeth.2089
https://dx.doi.org/10.1038/nmeth.2089
https://dx.doi.org/10.1021/es505331d
https://dx.doi.org/10.1021/es505331d
https://dx.doi.org/10.5194/acp-19-4061-2019
https://dx.doi.org/10.5194/acp-19-4061-2019
https://dx.doi.org/10.5194/amt-8-2463-2015
https://dx.doi.org/10.5194/amt-8-2463-2015
https://dx.doi.org/10.5194/amt-8-2463-2015
https://dx.doi.org/10.5194/amt-8-2463-2015
https://dx.doi.org/10.1039/c0an00312c
https://dx.doi.org/10.1039/c0an00312c
https://dx.doi.org/10.1039/c0an00312c
https://dx.doi.org/10.1039/c0cp02032j
https://dx.doi.org/10.1039/c0cp02032j
https://dx.doi.org/10.1039/c0cp02032j
https://dx.doi.org/10.1021/ac0012593
https://dx.doi.org/10.1021/ac0012593
https://dx.doi.org/10.5194/acp-19-12515-2019
https://dx.doi.org/10.5194/acp-19-12515-2019
https://dx.doi.org/10.5194/acp-19-12515-2019
https://dx.doi.org/10.5194/acp-8-5221-2008
https://dx.doi.org/10.5194/acp-8-5221-2008
https://dx.doi.org/10.1039/b507651j
https://dx.doi.org/10.5194/acp-7-1961-2007
https://dx.doi.org/10.5194/acp-7-1961-2007
https://dx.doi.org/10.5194/acp-7-1961-2007
https://dx.doi.org/10.5194/acp-9-795-2009
https://dx.doi.org/10.5194/acp-9-795-2009
https://dx.doi.org/10.5194/acp-13-2283-2013
https://dx.doi.org/10.5194/acp-13-2283-2013
https://dx.doi.org/10.1016/0022-3093(91)90266-9
https://dx.doi.org/10.1016/0022-3093(91)90266-9
https://dx.doi.org/10.1021/cr000689q
https://dx.doi.org/10.1021/cr000689q
https://dx.doi.org/10.1021/acs.est.6b04478
https://dx.doi.org/10.1021/acs.est.6b04478
https://dx.doi.org/10.1039/c8cp00760h
https://dx.doi.org/10.1039/c8cp00760h
https://dx.doi.org/10.1039/c8cp00760h
https://dx.doi.org/10.1039/C6CP08593H
https://dx.doi.org/10.1039/C6CP08593H
https://dx.doi.org/10.1039/C6CP08593H
https://dx.doi.org/10.1063/1.2932114
https://dx.doi.org/10.1063/1.2932114
https://dx.doi.org/10.1063/1.2932114
https://dx.doi.org/10.5194/acp-2020-768
https://dx.doi.org/10.5194/acp-2020-768
https://dx.doi.org/10.5194/acp-2020-768
http://pubs.acs.org/journal/aesccq?ref=pdf
https://dx.doi.org/10.1021/acsearthspacechem.0c00296?ref=pdf


(105) Zhmud, B. Viscosity Blending Equations. Lube Mag 2014, 121,
22−27.
(106) Crittenden, J. C.; Trussel, R. R.; Hand, D. W.; Howe, K. J.;
Tchobanoglous, G. MWH’s Water Treatment; John Wiley and Sons,
2012.
(107) Ruiz, L. H.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue,
N. M.; Pandis, S. N. Formation and Aging of Secondary Organic
Aerosol from Toluene: Changes in Chemical Composition, Volatility,
and Hygroscopicity. Atmos. Chem. Phys. 2015, 15, 8301−8313.
(108) Pajunoja, A.; Lambe, A. T.; Hakala, J.; Rastak, N.; Cummings,
M. J.; Brogan, J. F.; Hao, L.; Paramonov, M.; Hong, J.; Prisle, N. L.;
Malila, J.; Romakkaniemi, S.; Lehtinen, K. E. J.; Laaksonen, A.; Kulmala,
M.; Massoli, P.; Onasch, T. B.; Donahue, N. M.; Riipinen, I.;
Davidovits, P.; Worsnop, D. R.; Petaj̈a,̈ T.; Virtanen, A. Adsorptive
Uptake of Water by Semisolid Secondary Organic Aerosols. Geophys.
Res. Lett. 2015, 42, 3063−3068.
(109) Easteal, A. J. Tracer Diffusion in Aqueous Sucrose and Urea
Solutions. Can. J. Chem. 1990, 68, 1611−1615.
(110) Li, Y. J.; Chen, Q.; Guzman, M. I.; Chan, C. K.; Martin, S. T.
Second-generation products contribute substantially to the particle-
phase organic material produced by β-caryophyllene ozonolysis. Atmos.
Chem. Phys. 2011, 11, 121−132.
(111) Cheng, Y.; Su, H.; Koop, T.; Mikhailov, E.; Pöschl, U. Size
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