High pressure inside nanometre-sized particles influences the rate and products of chemical reactions

Matthieu Riva^{†,*}, Jianfeng Sun^{†,§}, V. Faye McNeill^{II}, Charline Ragon[†], Sebastien Perrier[†], Yinon Rudich[⊥], Sergey A. Nizkorodov[#], Jianmin Chen[§], Frederic Caupin[∇], Thorsten Hoffmann^{○,*}, Christian George^{†,*}

[†] Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France.

[§] Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.

^{II} Department of Chemical Engineering and Department of Earth and Environmental Sciences, Columbia University, New York, NY 10025 USA

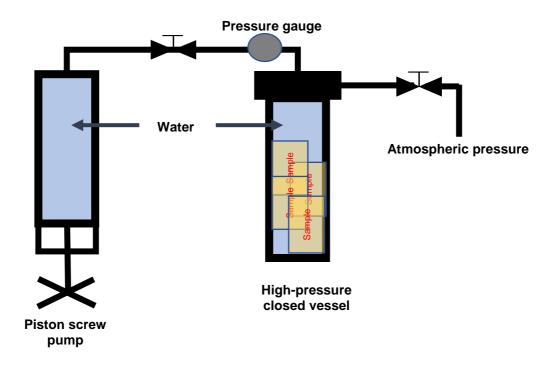
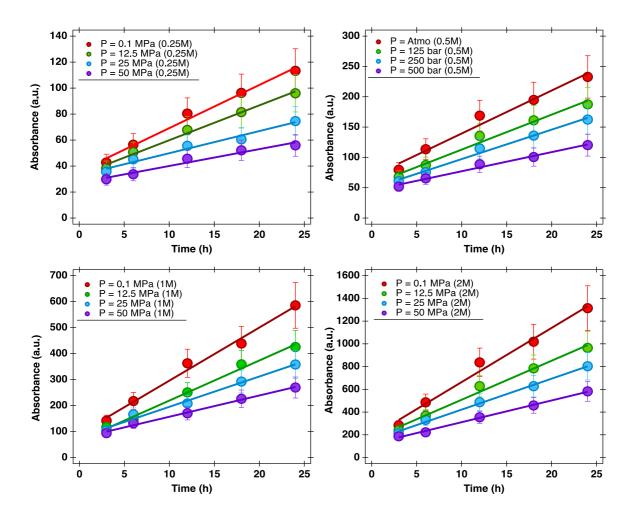
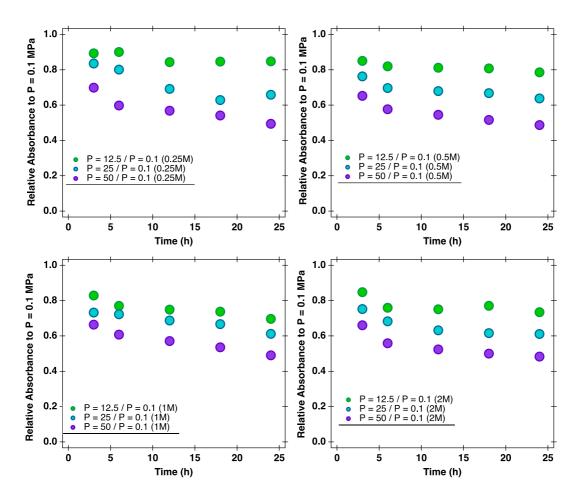
[⊥] Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot 76100, Israel.

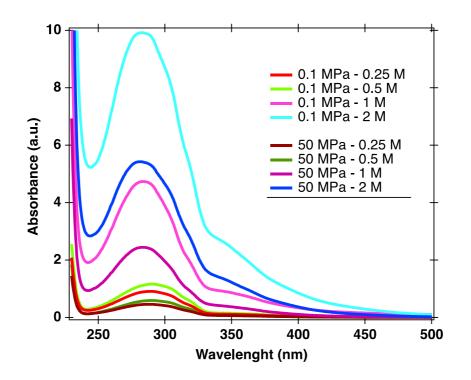
[#] Department of Chemistry, University of California, Irvine, CA 92694, USA.

⁷Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.

^o Department of Chemistry, Johannes Gutenberg-Universität, Mainz, Germany.

Keywords: SOA, mass spectrometry, heterogeneous chemistry, pressure, new particle formation


Figure S1. Schematic of the experimental set-up used to probe the impact of pressure on atmospheric chemical reactions.

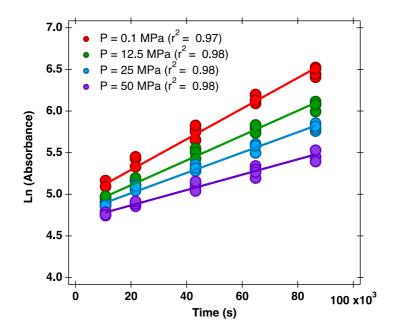

Figure S2. Absorbance of light-absorbing glyoxal reaction products at different pressures of reaction of 0.25 M; 0.5M; 1M and 2M glyoxal with 2 M AS, as function of reaction time (3, 6, 12, 18 and 24 hours).

Figure S3. Relative absorbance of light-absorbing glyoxal reaction products at different pressures of reaction of 0.25 M; 0.5M; 1M and 2M glyoxal with 2 M AS, as function of reaction time (3, 6, 12, 18 and 24 hours).

Figure S4. Absorption spectra of the reaction of glyoxal in 2 M ammonium sulphate solution after 24 hours, showing the formation of light absorbing compounds. The absorbance was retrieved by multiplying the signal intensity by the dilution factor.

Figure S4. First-order kinetic fit to the UV/Vis absorbance of light-absorbing glyoxal reaction products.