Supporting Information Content	
Number of pages	10
Number of tables	3
Number of figures	4

Superoxide Formation from Aqueous Reactions of Biogenic

Secondary Organic Aerosols

Jinlai Wei ${ }^{1}$, Ting Fang ${ }^{1}$, Cynthia Wong ${ }^{1}$, Pascale S. J. Lakey ${ }^{1}$, Sergey A. Nizkorodov ${ }^{1}$, Manabu Shiraiwa ${ }^{1, *}$
${ }^{1}$ Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA

SOA chemistry

There are numerous reactions involving SOA components with other reactive functionalities, ${ }^{1}$ but it is very challenging to make an exhaustive list with all possible reactions. The main focus of kinetic modeling is on reactions leading to the ROS formation, with the rest of reactions either lumped or omitted in the kinetic model. The termination reaction of α-hydroxyperoxyl radicals by $\mathrm{HO}_{2^{\bullet}}(\mathrm{R} 7$ in Table S 2$)$ and - OH oxidation of other SOA components represents the lumped reactions with other reactive functionalities, such as aldehydes and ketones. Even at the diffusion-limited rate of $10^{-11} \mathrm{~cm}^{3} \mathrm{~s}^{-1},{ }^{2}$ the sensitivity analysis indicates that these reactions have negligible impacts on the formation of radicals and BMPO adducts. For the potential reactions of aldehyde and ROOH , Marteau et al. ${ }^{3}$ demonstrated that they only act as a minor pathway for the initiation of a $\mathrm{R}(\mathrm{CO})^{\bullet}$ radical and subsequent autoxidation, while the major pathways are through UV irradiation, transition metal catalysis (not present in our system) and O_{2} oxidation (more probable). Furthermore, due to the relatively slow reaction rates of ROOH with ketones/aldehydes ${ }^{4}$ ($k \ll$ $1.0 \times 10^{-20} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$), the aldehyde-ROOH reaction is unlikely to be competitive with the unimolecular decomposition of ROOH (R 1 in Table $\mathrm{S} 2, k_{1} \sim 10^{-5} \mathrm{~s}^{-1}$). Given that no ${ }^{\bullet} \mathrm{OH}$ or $\mathrm{O}_{2} \cdot / \mathrm{HO}_{2}{ }^{\bullet}$ would be generated through this reaction ${ }^{3}$, we did not treat it in the kinetic model. A recent study by Peng and Jimenez ${ }^{5}$ discussed the potential formation of organic trioxide (ROOOH) from $\mathrm{RO}_{2}{ }^{\bullet}+\cdot \mathrm{OH}$ in the PAM chamber, however, it is unlikely that ROOOH would contribute substantially to ROS formation in the aqueous phase as observed in this study. The $\mathrm{ROOOH}+{ }^{\bullet} \mathrm{OH}$ reaction by the H abstraction from the -OOOH is expected to be very fast at a near diffusion-controlled rate $\left(\sim 10^{-11} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$ to form ROOO${ }^{\bullet}$, which rapidly decomposes to RO^{\bullet}, leading to carbonyl production. Thus, the condensation of ROOOH into the particle phase may not be significant as it should either be decomposed or reacted away prior to or shortly after partitioning. In addition, we compared the ROS formation from SOA samples collected freshly versus the ones stored in a freezer $\left(-20^{\circ} \mathrm{C}\right)$ for one month, which showed no statistically significant difference indicating that the compounds responsible for ROS formation in the SOA particles should be relatively stable.

$\mathrm{H}_{2} \mathrm{O}_{2}$ fluorometric assay

The $\mathrm{H}_{2} \mathrm{O}_{2}$ reactions with ${ }^{\circ} \mathrm{OH}$ and $\mathrm{HO}_{2}{ }^{\bullet}(\mathrm{R} 8, \mathrm{R} 12$ in Table S2) are unlikely to cause noticeable interference in ROS quantification. Specifically, $\mathrm{H}_{2} \mathrm{O}_{2}$ reacts with both ${ }^{\bullet} \mathrm{OH}$ and $\mathrm{HO}_{2} \cdot$ relatively slowly (5.5×10^{-14} and $5.0 \times 10^{-21} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, respectively). Sensitivity analysis indicates that these reactions are negligible pathways for the loss of ${ }^{\bullet} \mathrm{OH}$ and $\mathrm{HO}_{2}{ }^{\bullet}$ compared to BMPO trapping. On the other hand, the $\mathrm{H}_{2} \mathrm{O}_{2}$ probe (i.e., red peroxidase substrate) is in excess when performing $\mathrm{H}_{2} \mathrm{O}_{2}$ analysis and reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ relatively fast compared to the $\mathrm{H}_{2} \mathrm{O}_{2} \cdot{ }^{\bullet} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{HO}_{2}{ }^{\bullet}$ reactions. This probe is very sensitive and specific to $\mathrm{H}_{2} \mathrm{O}_{2}$ analysis as it does not yield fluorescence other than from its reaction with $\mathrm{H}_{2} \mathrm{O}_{2}$. Therefore, it is unlikely that other oxidants interfere with the $\mathrm{H}_{2} \mathrm{O}_{2}$ analysis. On a related issue, we note that the control experiment showed no EPR signal from BMPO $+\mathrm{H}_{2} \mathrm{O}_{2}$, indicating no inference of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the EPR measurement.

Table S1. $\mathrm{H}_{2} \mathrm{O}_{2}$ yields of aqueous reactions of $\mathrm{SOA}_{\mathrm{O} 3}$ and $\mathrm{SOA}_{\mathrm{OH}}$.

Precursor	$\mathrm{H}_{2} \mathrm{O}_{2}$ yield of $\mathrm{SOA}_{\mathrm{O} 3}, \%$	$\mathrm{H}_{2} \mathrm{O}_{2}$ yield of $\mathrm{SOA}_{\mathrm{OH}}, \%$
isoprene	4.2 ± 0.7	4.3 ± 0.4
β-pinene	1.8 ± 0.3	0.2 ± 0.05
α-terpineol	3.2 ± 0.7	0.4 ± 0.1
d-limonene	4.0 ± 0.5	0.3 ± 0.07

Table S2. Chemical reactions and parameters included in the kinetic model to simulate ROS formation from aqueous reactions of SOA. In the third column, the first row denotes the uncertainty range, while the second row denotes values for best fits for $\mathrm{SOA}_{\mathrm{O3}}$ and $\mathrm{SOA}_{\mathrm{OH}}$ (dashed lines in Fig. 3), respectively. The units of k_{1}, k_{3}, k_{17} and k_{20} are s^{-1}, while the others are $\mathrm{cm}^{3} \mathrm{~s}^{-1}$.

Reaction number	Reaction	Rate coefficient, best fit and uncertainty range	Refence or comment
SOA chemistry			
R1	$\mathrm{ROOH} \rightarrow \mathrm{RO}+\mathrm{OH}$	$\begin{aligned} & \hline k_{1}=(0.9-6.5) \times 10^{-5} \\ & 1.1 \times 10^{-5}, 5.2 \times 10^{-5} \end{aligned}$	Determined from MCGA
R2	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{CHOH}+\mathrm{OH} \xrightarrow{\mathrm{O}_{2}} c_{1} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}\left(\mathrm{O}_{2}\right) \mathrm{OH}$	$\begin{aligned} & k_{2}=(0.4-2.0) \times 10^{-11} \\ & 0.9 \times 10^{-11}, 2.0 \times 10^{-11} \\ & c_{1}=0.16-0.30 \\ & 0.28,0.30 \end{aligned}$	Determined from MCGA
R3	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}\left(\mathrm{O}_{2}\right) \mathrm{OH} \rightarrow \mathrm{R}_{1} \mathrm{C}(\mathrm{O}) \mathrm{R}_{2}+\mathrm{HO}_{2}$	$\begin{aligned} & k_{3}=17-595 \\ & 456,492 \end{aligned}$	Determined from MCGA
R4	$\mathrm{OH}+\mathrm{ROOH} \rightarrow \mathrm{RO}_{2}+\mathrm{H}_{2} \mathrm{O}$	$k_{4}=k_{8}$	Assumed to be same as R8
R5	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}\left(\mathrm{O}_{2}\right) \mathrm{OH}+\mathrm{OH} \rightarrow$ products	10^{-11} (insensitive)	
R6	$\mathrm{SOA}+\mathrm{OH} \rightarrow \mathrm{SOA}^{\text {, }}$	$\begin{aligned} & k_{6}=(0.7-9.9) \times 10^{-12} \\ & 1.5 \times 10^{-12}, 9.8 \times 10^{-12} \end{aligned}$	Determined from MCGA
R7	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}\left(\mathrm{O}_{2}\right) \mathrm{OH}+\mathrm{HO}_{2} \rightarrow$ products	10^{-13} (insensitive)	
ROS chemistry			
R8	$\mathrm{O}_{2}{ }^{-}+\mathrm{OH} \rightarrow \mathrm{O}_{2}+\mathrm{OH}^{-}$	$k_{7}=1.3 \times 10^{-11}$	6
R9	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HO}_{2}$	$k_{8}=5.5 \times 10^{-14}$	7

R 10	$\mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$	$k_{9}=8.6 \times 10^{-12}$	8
R 11	$\mathrm{OH}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	$k_{10}=1.2 \times 10^{-11}$	8
R 12	$\mathrm{HO}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$	$k_{11}=1.4 \times 10^{-15}$	9
R 13	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{OH}$	$k_{12}=5.0 \times 10^{-21}$	10
R 14	$\mathrm{HO}_{2}+\mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH}^{-}+\mathrm{O}_{2}$	$k_{13}=1.7 \times 10^{-13}$	9
R 15	$\mathrm{H}^{+}+\mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{HO}_{2}$	$k_{14}=2.9 \times 10^{-11}$	11
R 16	$\mathrm{HO}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{O}_{2}{ }^{-}$	$k_{15}=2.3 \times 10^{5}$	11

BMPO chemistry

R 17	$\mathrm{BMPO}+\mathrm{OH} \rightarrow \mathrm{BMPO}-\mathrm{OH}$	$k_{16}=(0.1-1.3) \times 10^{-12}$	Determined
		$0.5 \times 10^{-12}, 0.2 \times 10^{-12}$	from MCGA
R 18	$\mathrm{BMPO}-\mathrm{OH} \rightarrow$ products	$k_{17}=(4.8-8.0) \times 10^{-4}$	Determined
		$7.5 \times 10^{-4}, 7.6 \times 10^{-4}$	from MCGA
R 19	$\mathrm{BMPO}+\mathrm{O}_{2}{ }^{-}+\mathrm{H}^{+} \rightarrow \mathrm{BMPO}-\mathrm{OOH}$	$k_{18}=(0.1-7.0) \times 10^{-14}$	Determined
		$4.0 \times 10^{-14}, 3.0 \times 10^{-14}$	from MCGA
R 20	$\mathrm{BMPO}+\mathrm{HO}_{2} \rightarrow \mathrm{BMPO}-\mathrm{OOH}$	$k_{19}=(0.1-7.0) \times 10^{-14}$	Determined
		$2.5 \times 10^{-14}, 6.8 \times 10^{-14}$	from MCGA
R 21	$\mathrm{BMPO}-\mathrm{OOH} \rightarrow$ products	$k_{20}=(0.8-2.0) \times 10^{-3}$	Determined
		$1.3 \times 10^{-3}, 0.8 \times 10^{-3}$	from MCGA

Table S3. Molar fractions (in percent) of ROOH and $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{CHOH}$ in isoprene, β-pinene, α-terpineol and d-limonene $\mathrm{SOA}_{\mathrm{O3}}$ and $\mathrm{SOA}_{\mathrm{OH}}$. The values indicate best fit values with uncertainty ranges in brackets.

Functionality in SOA and reaction yield	$\mathrm{SOA}_{\mathrm{O} 3}$	$\mathrm{SOA}_{\mathrm{OH}}$
$\% \mathrm{ROOH}-$ isoprene	$10(6-25)$	$3(3-5)$
$\% \mathrm{ROOH}-\beta$-pinene	$12(7-35)$	$2(1-3)$
$\% \mathrm{ROOH}-\alpha$-terpineol	$9(6-14)$	$1(1-3)$
$\% \mathrm{ROOH}-$ d-limonene	$5(2-12)$	$3(2-4)$
$\% \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{CHOH}-$ isoprene	$72(45-74)$	$78(40-78)$
$\% \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{CHOH}-\beta$-pinene	$40(20-61)$	$72(46-78)$
$\% \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{CHOH}-\alpha$-terpineol	$0.2(0.1-1)$	$74(34-74)$
$\% \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{CHOH}-$ d-limonene	$78(57-79)$	$69(43-73)$

(a) Ozonolysis

Figure S1. Schematics of (a) dark ozonolysis in the flow tube and (b) ${ }^{\circ} \mathrm{OH}$ photooxidation in the PAM reactor for generating SOA particles. MFC represents mass flow controller.

Residual
Residual

(d) $\quad \alpha$-terpineol $\mathrm{SOA}_{\mathrm{OH}}$

(f) d-limonene $\mathrm{SOA}_{\mathrm{OH}}$

Figure S2. EPR spectra of sample solutions mixed with the spin-trapping agent BMPO: (a) β-pinene SOA $_{03}$, (b) β-pinene $\mathrm{SOA}_{\mathrm{OH}}$, (c) α-terpineol $\mathrm{SOA}_{\mathrm{O} 3}$, (d) α-terpineol $\mathrm{SOA}_{\mathrm{OH}}$, (e) d-limonene $\mathrm{SOA}_{\mathrm{O}}$, (f) d-limonene $\mathrm{SOA}_{\mathrm{OH}}$. The observed spectra (black) are simulated (purple) and deconvoluted into BMPO-OH isomer 1 (brown), BMPO-OH isomer 2 (red), BMPO-OOH isomer 1 (light green), BMPO-OOH isomer 2 (dark green), BMPO-R (yellow), BMPO-OR (blue), and residual (grey).

Ozonolysis

Figure S4. Correlation of BMPO-OOH and $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations in aqueous reactions of (a) SOA_{03} and (b) $\mathrm{SOA}_{\mathrm{OH}}$.

References

1. Ziemann, P. J.; Atkinson, R., Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 2012, 41, (19), 6582-6605.
2. Arangio, A. M.; Slade, J. H.; Berkemeier, T.; Pöschl, U.; Knopf, D. A.; Shiraiwa, M., Multiphase Chemical Kinetics of OH Radical Uptake by Molecular Organic Markers of Biomass Burning Aerosols: Humidity and Temperature Dependence, Surface Reaction and Bulk Diffusion. J. Phys. Chem. A 2015, 119, (19), 4533-4544.
3. Marteau, C.; Ruyffelaere, F.; Aubry, J. M.; Penverne, C.; Favier, D.; Nardello-Rataj, V., Oxidative degradation of fragrant aldehydes. Autoxidation by molecular oxygen. Tetrahedron 2013, 69, (10), 22682275.
4. Denisov, E. T.; Afanas' ev, I. B., Oxidation and antioxidants in organic chemistry and biology. CRC press: 2005.
5. Peng, Z.; Jimenez, J. L., Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chemical Society Reviews 2020.
6. Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B., Critical-Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen-Atoms and Hydroxyl Radicals (.OH/O-) in AqueousSolution. J Phys Chem Ref Data 1988, 17, (2), 1-21.
7. Christensen, H.; Sehested, K.; Corfitzen, H., Reactions of Hydroxyl Radicals with HydrogenPeroxide at Ambient and Elevated-Temperatures. J Phys Chem-Us 1982, 86, (9), 1588-1590.
8. Sehested, K.; Rasmussen, O. L.; Fricke, H., Rate Constants of OH with HO2, O2- and H2O2+ from Hydrogen Peroxide Formation in Pulse-Irradiated Oxygenated Water. J Phys Chem-Us 1968, 72, (2), 626631.
9. Rush, J. D.; Bielski, B. H. J., Pulse radiolytic studies of the reaction of perhydroxyl/superoxide $\mathrm{O}_{2}{ }^{-}$ with iron(II)/iron(III) ions. The reactivity of $\mathrm{HO}_{2} / \mathrm{O}_{2}{ }^{-}$with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. J. Phys. Chem. 1985, 89, (23), 5062-5066.
10. Koppenol, W. H.; Butler, J.; Leeuwen, J. W. v., THE HABER-WEISS CYCLE. Photochem Photobiol 1978, 28, (4-5), 655-658.
11. Thornton, J. A.; Jaeglé, L.; McNeill, V. F., Assessing known pathways for HO2 loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants. Journal of Geophysical Research: Atmospheres 2008, 113, (D5), 1-15.
