# Supporting Information <br> Influence of solvent on electronic structure and the photochemistry of nitrophenols 

Avery B. Dalton ${ }^{a}$, Scott M. Le ${ }^{a}$, Natalia V. Karimova ${ }^{a}$, R. Benny Gerber ${ }^{a b}$, and Sergey A. Nizkorodov ${ }^{a *}$

a Department of Chemistry, University of California, Irvine, Irvine, CA 92697
${ }^{\text {b }}$ Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904

## Contents

Photochemical Irradiation Source2
Determination of Quantum Yields ..... 3
Absorption Spectra from Photolysis in Acidic Organic Solutions ..... 4
Absorption Spectra from Photolysis in Basic Organic Solutions ..... 6
Referenced Photochemical Yields in Aqueous Solutions ..... 9
Simulated Absorption Spectra ..... 10
Output Data from TDDFT/TDA Calculations ..... 13

## Photochemical Irradiation Source



Figure S1. Spectral flux density of the irradiation source used to initiate photochemistry in these experiments is displayed in red. The dark blue trace shows the 24-h averaged flux for Los Angeles (1 July 2022) simulated with the National Center for Atmospheric Research (NCAR) Tropospheric Ultraviolet and Visible (TUV) calculator, used to estimate atmospheric lifetimes. The pale blue trace shows the maximum flux within the 24 h window. We used the 24-h average flux for the results reported in this paper, which is appropriate for molecules that have lifetimes exceeding 1 day. We note that for molecules with lifetimes $<1$ day, their actual ambient lifetime will be shorter during the peak of the solar irradiation.

## Determination of Quantum Yields

Photochemical quantum yields were calculated from the absorption-based rate constant and averaged over a 100 nm window, the approximate width of the main absorption bands. The absorption of each nitrophenol was monitored via UV/Vis for $3-5 \mathrm{~h}$, depending on the reactivity of the nitrophenol. To account for the effect of light-absorbing products, rate constants were determined at the minimum of the normalized absorbance, which would be at 235 nm in the 24DNP example shown in Figure 3. This rate, $k\left(\mathrm{~s}^{-1}\right)$, can then be used in Equation S1 to determine the average quantum yield, $\langle\phi\rangle$.
$\langle\phi\rangle=k / \int_{\lambda 1}^{\lambda 2} F(\lambda) \sigma(\lambda) d \lambda$

## Equation S1

In this equation, $F(\lambda)$ is the irradiation source shown in Figure S 1 , and $\sigma(\lambda)$ is the absorption cross-section of the molecule. The bounds of the integration, $\lambda_{2}$ and $\lambda_{1}$, correspond to the wavelengths +50 nm and -50 nm from the point of greatest decay. For example, for 4 NP the most decay in normalized absorbance occurred at 319 nm , so the integration window was $\lambda_{1}=269 \mathrm{~nm}$ and $\lambda_{2}=369 \mathrm{~nm}$. The only exception to this was 24DNP, which showed the most change at 235 nm , and the integration center-point was set to 290 nm , the approximate location of the main absorption peak.

To determine estimated atmospheric lifetimes, this equation was flipped to solve for the rate constant resulting from using the 24-h average Los Angeles flux as $\mathrm{F}(\lambda)$, and then taking the inverse of the rate constant to be the lifetime.


Figure S2. (a) The absorption spectrum of 2NP collected over 3 h of exposure to photochemical radiation, (b) the absorption spectrum of 2 NP normalized to the absorption spectrum obtained before photolysis began, and (c) the decrease in the normalized absorbance at 355 nm , indicating loss of 2 NP , fit to an exponential decay. For this experiment, the sample was irradiated without use of the light guide, exposing the sample to $\sim 5 \times$ larger irradiance than the other samples.


Figure S3. (a) The absorption spectrum of 4NP collected over 3 h of exposure to photochemical radiation, (b) the absorption spectrum of 4 NP normalized to the absorption spectrum obtained before photolysis began, and (c) the decrease in the normalized absorbance at 319 nm , indicating loss of 4 NP , fit to an exponential decay.


Figure S4. (a) The absorption spectrum of 246 TNP collected over 3 h of exposure to photochemical radiation, (b) the absorption spectrum of 246 TNP normalized to the absorption spectrum obtained before photolysis began, and (c) the decrease in the normalized absorbance at 352 nm , indicating loss of 246TNP, fit to an exponential decay.

## Absorption Spectra from Photolysis in Basic Organic Solutions



Figure S5. (a) The absorption spectrum of 2NP collected over 3 h of exposure to photochemical radiation, (b) the absorption spectrum of 2 NP normalized to the absorption spectrum obtained before photolysis began, and (c) the decrease in the normalized absorbance at 412 nm , indicating loss of 2 NP , fit to an exponential decay. Panel (d) illustrates the approximate "product" spectrum at the end of 120 minutes of photolysis, generated using the value of C from the original fit ( 0.89 ) to subtract out the contribution of the spectrum of the starting material: $\mathrm{A}_{\text {products }}=\mathrm{A}_{120 \min }-\left[\mathrm{C} \times \mathrm{A}_{0 \text { min }}\right]$. This plot is shown to illustrate that this period of small change may be caused by a small portion of the sample returning to the neutral form.


Figure S6. (a) The absorption spectrum of 4NP collected over 3 h of exposure to photochemical radiation, (b) the absorption spectrum of 4 NP normalized to the absorption spectrum obtained before photolysis began, and (c) the decrease in the normalized absorbance at 391 nm , indicating loss of 4 NP , fit to an exponential decay.


Figure S7. (a) The absorption spectrum of 24DNP collected over 3 h of exposure to photochemical radiation, (b) the absorption spectrum of 24DNP normalized to the absorption spectrum obtained before photolysis began, and (c) the decrease in the normalized absorbance at 356 nm , indicating loss of 24DNP, fit to an exponential decay.


Figure S8. (a) The absorption spectrum of 246 TNP collected over 3 h of exposure to photochemical radiation, (b) the absorption spectrum of 246 TNP normalized to the absorption spectrum obtained before photolysis began, and (c) the decrease in the normalized absorbance at 343 nm , indicating loss of 246TNP, fit to an exponential decay.

## Referenced Photochemical Yields in Aqueous Solutions

Table S1. Photochemical yields of undissociated nitrophenols in aqueous solutions.

| Molecule | Quantum Yield | Reference | Conditions |
| :--- | :--- | :--- | :--- |
| 2 NP | $(6.8 \pm 0.3) \times 10^{-6}$ | This work | $[\mathrm{HCl}]=10^{-3} \mathrm{M}$, broadband |
|  | $1 \times 10^{-4}$ | Barsotti et al., 2017 | $\mathrm{pH}=3$, broadband |
|  | $4.7 \times 10^{-6}$ | Alif et al., 1991 | $\mathrm{pH}=2.2$, monochromatic $(365 \mathrm{~nm})$ |
| 4 NP | $(9.9 \pm 0.1) \times 10^{-5}$ | This work | $[\mathrm{HCl}]=10^{-3} \mathrm{M}$, broadband |
|  | $(3.3$ to 21$) \times 10^{-5}$ | Lemaire et al., 1985 | $\mathrm{pH}=2$, broadband |
|  | $4.3 \times 10^{-4}$ | Einschlag et al., 2002 | $\mathrm{pH}=2.5$, broadband |
|  | $(7.3 \pm 0.5) \times 10^{-4}$ | Barsotti et al., 2017 | $\mathrm{pH}=3$, broadband |
|  | $(1.4 \pm 0.1) \times 10^{-4}$ | Braman et al., 2020 | $\mathrm{pH}=3.5$, broadband |
| 24 DNP | $1.3 \times 10^{-4}$ | Einschlag et al., 2002 | $\mathrm{pH}=2.5$, broadband |
|  | $(8.1 \pm 0.4) \times 10^{-5}$ | Albinet et al., 2010 | $\mathrm{pH}=2.5$, broadband |
|  | $(3.6$ to 4.4$) \times 10^{-6}$ | Lignell et al., 2014 | Broadband |
|  | $(2.1 \pm 0.1) \times 10^{-4}$ | Barsotti et al., 2017 | $\mathrm{pH}=3$, broadband |

Simulated Absorption Spectra


Figure S9. Simulated absorption spectra for 2NP (a), 4NP (b), 24DNP (c) and 246TNP (d) employing solvation models for 2-propanol (red) and aqueous (blue) solutions. The 24DNP spectrum required explicit solvation by three solvent molecules, as described in the main text. Subtle (i.e., less than 1 nm ) changes in peak position were observed for only some absorption bands. Variations in intensity for the 24DNP spectra are the most notable result.


Figure S10. The experimental and theoretical spectra of 24DNP in 2-propanol as solvent. Panel (a) shows the spectra overlayed on each other, and panels (b), (c), and (d) show the individual spectra and oscillator strengths from simulations with C-PCM only, and one and three explicit 2-propanol solvent molecules, respectively. Explicit solvation affects the relative intensities of individual excitations within each absorption band. The notation in the figure legends represent the number of explicit solvent molecules used, i.e. " 1 x " for 1 explicit 2-propanol solvent molecule.


Figure S11. The experimental and theoretical absorption spectra of 246TNP as a neutral (a) and anionic (b) species in isopropanol. The insets of these plots show the second derivatives of the absorption spectra. The optimized structures of the neutral form of 246 TNP are shown in (c) and (d), with the latter having been rotated to show the rotation of the non-planar $\mathrm{NO}_{2}$ group.

## Output Data from TDDFT/TDA Calculations

The numerical values used to create the theoretical excitation spectra are in Table S1 below. Spectra were created by finding 35 roots (all singlets) and assigning Lorentzian functions to each excitation wavelength, but only those with an excitation energy less than 6.7 eV are listed here. Minimal differences were observed by using expanded basis sets, i.e. $6-311++G^{* *}$ vs. $6-311++G^{* *}$, so only the results from $6-311++G^{* *}$, aug-$\mathrm{cc}-\mathrm{pVDZ}$, and def2-TZVPD are reported.

Table S2. Simulated spectral data for 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol.

| Nitrophenol | Exchange | Basis | Energy (eV) | Wavelength (nm) | Oscillator <br> Strength |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2-nitrophenol | B3LYP | 6-311++G** | 3.351 | 370.0 | 8.48E-02 |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 3.936 | 315.0 | $8.06 \mathrm{E}-06$ |
|  | B3LYP | 6-311++G** | 4.428 | 280.0 | $3.95 \mathrm{E}-01$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.493 | 275.9 | $4.47 \mathrm{E}-04$ |
|  | B3LYP | 6-311++G** | 5.632 | 220.2 | $1.68 \mathrm{E}-02$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.973 | 207.6 | $9.83 \mathrm{E}-02$ |
|  | B3LYP | 6-311++G** | 6.020 | 205.9 | $3.31 \mathrm{E}-04$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 6.158 | 201.3 | $3.74 \mathrm{E}-03$ |
|  | B3LYP | 6-311++G** | 6.417 | 193.2 | $2.93 \mathrm{E}-01$ |
|  | B3LYP | 6-311++G** | 6.492 | 191.0 | $2.19 \mathrm{E}-02$ |
|  | B3LYP | 6-311++G** | 6.517 | 190.2 | $2.59 \mathrm{E}-03$ |
| 2-nitrophenol | B3LYP | aug-cc-pVTZ | 3.377 | 367.2 | 8.47E-02 |
|  | B3LYP | aug-cc-pVTZ | 3.953 | 313.6 | $6.65 \mathrm{E}-06$ |
|  | B3LYP | aug-cc-pVTZ | 4.448 | 278.7 | $3.90 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 4.490 | 276.1 | $5.00 \mathrm{E}-04$ |
|  | B3LYP | aug-cc-pVTZ | 5.616 | 220.8 | $1.65 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 5.981 | 207.3 | $1.16 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 6.012 | 206.2 | $2.53 \mathrm{E}-03$ |
|  | B3LYP | aug-cc-pVTZ | 6.020 | 206.0 | $1.53 \mathrm{E}-03$ |
|  | B3LYP | aug-cc-pVTZ | 6.385 | 194.2 | $2.82 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 6.388 | 194.1 | $2.66 \mathrm{E}-03$ |
|  | B3LYP | aug-cc-pVTZ | 6.463 | 191.8 | $9.14 \mathrm{E}-03$ |
|  | B3LYP | aug-cc-pVTZ | 6.579 | 188.4 | $8.68 \mathrm{E}-03$ |


| 2-nitrophenol | B3LYP | def2-TZVPPD | 3.376 | 367.3 | 8.44E-02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B3LYP | def2-TZVPPD | 3.951 | 313.8 | $6.82 \mathrm{E}-06$ |
|  | B3LYP | def2-TZVPPD | 4.449 | 278.7 | $3.89 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 4.489 | 276.2 | $5.04 \mathrm{E}-04$ |
|  | B3LYP | def2-TZVPPD | 5.625 | 220.4 | $1.53 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 5.987 | 207.1 | $1.09 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 6.017 | 206.1 | $3.77 \mathrm{E}-04$ |
|  | B3LYP | def2-TZVPPD | 6.246 | 198.5 | $3.00 \mathrm{E}-03$ |
|  | B3LYP | def2-TZVPPD | 6.398 | 193.8 | $2.94 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 6.466 | 191.7 | $1.10 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 6.629 | 187.0 | $3.97 \mathrm{E}-03$ |
| 2-nitrophenol | PBE0 | 6-311++G** | 3.525 | 351.8 | $9.95 \mathrm{E}-02$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 4.011 | 309.1 | $6.09 \mathrm{E}-06$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 4.564 | 271.6 | $6.68 \mathrm{E}-04$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 4.573 | 271.1 | $3.88 \mathrm{E}-01$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 5.776 | 214.6 | $1.61 \mathrm{E}-02$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.169 | 201.0 | $4.29 \mathrm{E}-04$ |
|  | PBE0 | 6-311++G** | 6.177 | 200.7 | $1.44 \mathrm{E}-01$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.414 | 193.3 | $3.39 \mathrm{E}-03$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.569 | 188.7 | $2.80 \mathrm{E}-01$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.647 | 186.5 | $3.14 \mathrm{E}-02$ |
| 2-nitrophenol | PBE0 | aug-cc-pVTZ | 3.551 | 349.2 | $9.90 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVTZ | 4.032 | 307.5 | $5.08 \mathrm{E}-06$ |
|  | PBE0 | aug-cc-pVTZ | 4.559 | 272.0 | $4.67 \mathrm{E}-04$ |
|  | PBE0 | aug-cc-pVTZ | 4.595 | 269.8 | $3.83 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 5.760 | 215.2 | $1.67 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVTZ | 6.161 | 201.2 | $4.66 \mathrm{E}-04$ |
|  | PBE0 | aug-cc-pVTZ | 6.173 | 200.8 | $1.66 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 6.265 | 197.9 | $3.34 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVTZ | 6.530 | 189.9 | $2.38 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 6.643 | 186.6 | $4.51 \mathrm{E}-02$ |


|  | PBE0 | aug-cc-pVTZ | 6.656 | 186.3 | $3.63 \mathrm{E}-03$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2-nitrophenol | PBE0 | def2-TZVPPD | 3.550 | 349.2 | $9.85 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 4.030 | 307.7 | 5.16E-06 |
|  | PBE0 | def2-TZVPPD | 4.558 | 272.0 | $4.68 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 4.596 | 269.7 | $3.82 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 5.767 | 215.0 | $1.54 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 6.159 | 201.3 | $4.74 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 6.182 | 200.5 | $1.58 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 6.495 | 190.9 | $2.54 \mathrm{E}-03$ |
|  | PBE0 | def2-TZVPPD | 6.539 | 189.6 | $2.46 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 6.647 | 186.5 | $5.11 \mathrm{E}-02$ |
| 4-nitrophenol | B3LYP | 6-311++G** | 3.829 | 323.8 | $1.30 \mathrm{E}-07$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 3.980 | 311.5 | $5.02 \mathrm{E}-01$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.159 | 298.1 | $1.60 \mathrm{E}-02$ |
|  | B3LYP | 6-311++G** | 4.504 | 275.3 | $3.26 \mathrm{E}-04$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.438 | 228.0 | $6.89 \mathrm{E}-02$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 6.117 | 202.7 | $1.61 \mathrm{E}-03$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 6.143 | 201.8 | $1.51 \mathrm{E}-04$ |
|  | B3LYP | 6-311++G** | 6.376 | 194.4 | $1.24 \mathrm{E}-01$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 6.450 | 192.2 | $1.12 \mathrm{E}-01$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 6.479 | 191.4 | $1.58 \mathrm{E}-02$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 6.530 | 189.9 | $3.28 \mathrm{E}-04$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 6.595 | 188.0 | $2.33 \mathrm{E}-06$ |
| 4-nitrophenol | B3LYP | aug-cc-pVTZ | 3.855 | 321.6 | $9.12 \mathrm{E}-08$ |
|  | B3LYP | aug-cc-pVTZ | 4.003 | 309.7 | 4.98E-01 |
|  | B3LYP | aug-cc-pVTZ | 4.193 | 295.7 | $1.46 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 4.508 | 275.0 | $3.83 \mathrm{E}-04$ |
|  | B3LYP | aug-cc-pVTZ | 5.413 | 229.0 | $6.92 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 6.004 | 206.5 | $1.67 \mathrm{E}-03$ |
|  | B3LYP | aug-cc-pVTZ | 6.148 | 201.7 | 5.82E-05 |


|  | B3LYP | aug-cc-pVTZ | 6.358 | 195.0 | $9.76 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B3LYP | aug-cc-pVTZ | 6.403 | 193.6 | $1.09 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 6.405 | 193.6 | $3.66 \mathrm{E}-04$ |
|  | B3LYP | aug-cc-pVTZ | 6.488 | 191.1 | $5.32 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 6.551 | 189.2 | $3.47 \mathrm{E}-05$ |
|  | B3LYP | aug-cc-pVTZ | 6.639 | 186.7 | $2.43 \mathrm{E}-05$ |
| 4-nitrophenol | B3LYP | def2-TZVPPD | 3.853 | 321.8 | $9.28 \mathrm{E}-08$ |
|  | B3LYP | def2-TZVPPD | 4.003 | 309.7 | $4.97 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 4.193 | 295.7 | $1.44 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 4.506 | 275.2 | $3.86 \mathrm{E}-04$ |
|  | B3LYP | def2-TZVPPD | 5.423 | 228.6 | $6.74 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 6.145 | 201.7 | $2.54 \mathrm{E}-05$ |
|  | B3LYP | def2-TZVPPD | 6.212 | 199.6 | $1.62 \mathrm{E}-03$ |
|  | B3LYP | def2-TZVPPD | 6.381 | 194.3 | $1.05 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 6.406 | 193.5 | $1.14 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 6.498 | 190.8 | $4.03 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 6.559 | 189.0 | $4.29 \mathrm{E}-05$ |
|  | B3LYP | def2-TZVPPD | 6.626 | 187.1 | $5.72 \mathrm{E}-04$ |
| 4-nitrophenol | PBE0 | 6-311++G** | 3.902 | 317.8 | 1.14E-07 |
|  | PBE0 | 6-311++G** | 4.127 | 300.4 | 5.14E-01 |
|  | PBE0 | 6-311++G** | 4.367 | 283.9 | $1.47 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 4.574 | 271.1 | $2.97 \mathrm{E}-04$ |
|  | PBE0 | 6-311++G** | 5.568 | 222.7 | $8.15 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 6.297 | 196.9 | $3.52 \mathrm{E}-05$ |
|  | PBE0 | 6-311++G** | 6.386 | 194.1 | $2.11 \mathrm{E}-03$ |
|  | PBE0 | 6-311++G** | 6.534 | 189.7 | $9.32 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 6.572 | 188.6 | $1.41 \mathrm{E}-01$ |
| 4-nitrophenol | PBE0 | aug-cc-pVTZ | 3.932 | 315.3 | $7.89 \mathrm{E}-08$ |
|  | PBE0 | aug-cc-pVTZ | 4.153 | 298.5 | $5.09 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 4.402 | 281.7 | $1.34 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVTZ | 4.578 | 270.8 | $3.57 \mathrm{E}-04$ |


|  | PBE0 | aug-cc-pVTZ | 5.543 | 223.7 | $8.21 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PBE0 | aug-cc-pVTZ | 6.267 | 197.8 | $1.96 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVTZ | 6.297 | 196.9 | $9.80 \mathrm{E}-05$ |
|  | PBE0 | aug-cc-pVTZ | 6.501 | 190.7 | $8.74 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVTZ | 6.528 | 189.9 | $1.34 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 6.690 | 185.3 | $1.81 \mathrm{E}-04$ |
| 4-nitrophenol | PBE0 | def2-TZVPPD | 3.929 | 315.5 | $7.99 \mathrm{E}-08$ |
|  | PBE0 | def2-TZVPPD | 4.153 | 298.5 | $5.09 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 4.401 | 281.7 | $1.33 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 4.575 | 271.0 | $3.59 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 5.552 | 223.3 | $8.02 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 6.295 | 196.9 | $3.53 \mathrm{E}-05$ |
|  | PBE0 | def2-TZVPPD | 6.481 | 191.3 | $2.11 \mathrm{E}-03$ |
|  | PBE0 | def2-TZVPPD | 6.526 | 190.0 | 8.55E-02 |
|  | PBE0 | def2-TZVPPD | 6.531 | 189.8 | $1.38 \mathrm{E}-01$ |
| 2,4-dinitrophenol | B3LYP | 6-311++G** | 3.584 | 345.9 | $8.59 \mathrm{E}-02$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 3.847 | 322.2 | $8.13 \mathrm{E}-07$ |
|  | B3LYP | 6-311++G** | 3.964 | 312.8 | 4.28E-06 |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.155 | 298.4 | $3.03 \mathrm{E}-01$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.466 | 277.6 | $2.72 \mathrm{E}-07$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.495 | 275.8 | $6.31 \mathrm{E}-04$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.545 | 272.8 | $3.19 \mathrm{E}-01$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.700 | 263.8 | $2.33 \mathrm{E}-01$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 4.710 | 263.2 | 6.19E-06 |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.260 | 235.7 | $3.78 \mathrm{E}-03$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.265 | 235.5 | $1.10 \mathrm{E}-05$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.302 | 233.8 | $5.17 \mathrm{E}-06$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.698 | 217.6 | $3.09 \mathrm{E}-05$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.772 | 214.8 | $9.89 \mathrm{E}-03$ |
|  | B3LYP | $6-311++\mathrm{G}^{* *}$ | 5.942 | 208.7 | $3.48 \mathrm{E}-02$ |


|  | B3LYP | 6-311++G** | 6.347 | 195.3 | $9.77 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B3LYP | 6-311++G** | 6.449 | 192.3 | $3.92 \mathrm{E}-04$ |
|  | B3LYP | 6-311++G** | 6.469 | 191.6 | $9.13 \mathrm{E}-02$ |
|  | B3LYP | 6-311++G** | 6.561 | 189.0 | $4.08 \mathrm{E}-02$ |
| 2,4-dinitrophenol | B3LYP | aug-cc-pVTZ | 3.604 | 344.0 | $8.63 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 3.875 | 319.9 | $3.74 \mathrm{E}-07$ |
|  | B3LYP | aug-cc-pVTZ | 3.982 | 311.4 | $3.79 \mathrm{E}-06$ |
|  | B3LYP | aug-cc-pVTZ | 4.175 | 297.0 | $3.03 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 4.466 | 277.6 | $5.74 \mathrm{E}-06$ |
|  | B3LYP | aug-cc-pVTZ | 4.495 | 275.8 | $7.03 \mathrm{E}-04$ |
|  | B3LYP | aug-cc-pVTZ | 4.569 | 271.3 | $3.24 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 4.719 | 262.7 | $2.35 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 4.728 | 262.2 | $1.34 \mathrm{E}-05$ |
|  | B3LYP | aug-cc-pVTZ | 5.259 | 235.8 | 6.65E-06 |
|  | B3LYP | aug-cc-pVTZ | 5.295 | 234.1 | $3.82 \mathrm{E}-03$ |
|  | B3LYP | aug-cc-pVTZ | 5.314 | 233.3 | $8.56 \mathrm{E}-07$ |
|  | B3LYP | aug-cc-pVTZ | 5.689 | 217.9 | $3.50 \mathrm{E}-05$ |
|  | B3LYP | aug-cc-pVTZ | 5.806 | 213.5 | $1.05 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 5.925 | 209.2 | $3.39 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 6.341 | 195.5 | $1.10 \mathrm{E}-01$ |
|  | B3LYP | aug-cc-pVTZ | 6.435 | 192.7 | $8.98 \mathrm{E}-02$ |
|  |  |  | 6.441 | 192.5 | $4.76 \mathrm{E}-04$ |
|  |  |  | 6.548 | 189.3 | $2.64 \mathrm{E}-02$ |
|  | B3LYP | aug-cc-pVTZ | 6.554 | 189.2 | $1.93 \mathrm{E}-04$ |
| 2,4-dinitrophenol | B3LYP | def2-TZVPPD | 3.603 | 344.1 | $8.60 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 3.873 | 320.2 | $4.06 \mathrm{E}-07$ |
|  | B3LYP | def2-TZVPPD | 3.980 | 311.5 | $3.83 \mathrm{E}-06$ |
|  | B3LYP | def2-TZVPPD | 4.175 | 297.0 | $3.02 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 4.464 | 277.7 | $3.94 \mathrm{E}-06$ |
|  | B3LYP | def2-TZVPPD | 4.493 | 275.9 | $7.11 \mathrm{E}-04$ |
|  | B3LYP | def2-TZVPPD | 4.569 | 271.4 | $3.23 \mathrm{E}-01$ |


|  | B3LYP | def2-TZVPPD | 4.719 | 262.7 | $2.35 \mathrm{E}-01$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B3LYP | def2-TZVPPD | 4.726 | 262.3 | $1.50 \mathrm{E}-05$ |
|  | B3LYP | def2-TZVPPD | 5.257 | 235.8 | $6.86 \mathrm{E}-06$ |
|  | B3LYP | def2-TZVPPD | 5.295 | 234.2 | $3.83 \mathrm{E}-03$ |
|  | B3LYP | def2-TZVPPD | 5.312 | 233.4 | $1.09 \mathrm{E}-06$ |
|  | B3LYP | def2-TZVPPD | 5.687 | 218.0 | $3.45 \mathrm{E}-05$ |
|  | B3LYP | def2-TZVPPD | 5.805 | 213.6 | $1.05 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 5.930 | 209.1 | $3.28 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 6.342 | 195.5 | $1.10 \mathrm{E}-01$ |
|  | B3LYP | def2-TZVPPD | 6.436 | 192.6 | $9.03 \mathrm{E}-02$ |
|  | B3LYP | def2-TZVPPD | 6.438 | 192.6 | $5.17 \mathrm{E}-04$ |
|  | B3LYP | def2-TZVPPD | 6.551 | 189.3 | $2.72 \mathrm{E}-02$ |
| 2,4-dinitrophenol | PBE0 | 6-311++G** | 3.766 | 329.2 | 9.74E-02 |
|  | PBE0 | 6-311++G** | 3.924 | 315.9 | $8.03 \mathrm{E}-07$ |
|  | PBE0 | 6-311++G** | 4.041 | 306.8 | $3.15 \mathrm{E}-06$ |
|  | PBE0 | 6-311++G** | 4.322 | 286.8 | $3.32 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 4.543 | 272.9 | $1.38 \mathrm{E}-06$ |
|  | PBE0 | 6-311++G** | 4.570 | 271.3 | $5.77 \mathrm{E}-04$ |
|  | PBE0 | 6-311++G** | 4.755 | 260.7 | $3.76 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 4.884 | 253.8 | $1.72 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 5.056 | 245.2 | $1.23 \mathrm{E}-07$ |
|  | PBE0 | 6-311++G** | 5.561 | 222.9 | 3.34E-03 |
|  | PBE0 | 6-311++G** | 5.586 | 222.0 | $1.61 \mathrm{E}-05$ |
|  | PBE0 | 6-311++G** | 5.661 | 219.0 | $1.43 \mathrm{E}-05$ |
|  | PBE0 | 6-311++G** | 6.008 | 206.4 | $3.47 \mathrm{E}-05$ |
|  | PBE0 | 6-311++G** | 6.092 | 203.5 | $1.01 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 6.116 | 202.7 | $3.53 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 6.535 | 189.7 | $1.60 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 6.599 | 187.9 | $1.09 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 6.627 | 187.1 | $5.07 \mathrm{E}-04$ |
| 2,4-dinitrophenol | PBE0 | aug-cc-pVTZ | 3.785 | 327.6 | $9.73 \mathrm{E}-02$ |


|  | PBE0 | aug-cc-pVTZ | 3.957 | 313.3 | 3.91E-07 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PBE0 | aug-cc-pVTZ | 4.063 | 305.1 | $2.81 \mathrm{E}-06$ |
|  | PBE0 | aug-cc-pVTZ | 4.343 | 285.5 | $3.30 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 4.542 | 273.0 | $7.18 \mathrm{E}-06$ |
|  | PBE0 | aug-cc-pVTZ | 4.569 | 271.4 | $6.59 \mathrm{E}-04$ |
|  | PBE0 | aug-cc-pVTZ | 4.781 | 259.3 | $3.89 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 4.905 | 252.7 | $1.69 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 5.075 | 244.3 | $2.60 \mathrm{E}-06$ |
|  | PBE0 | aug-cc-pVTZ | 5.573 | 222.5 | $1.21 \mathrm{E}-05$ |
|  | PBE0 | aug-cc-pVTZ | 5.599 | 221.4 | $3.50 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVTZ | 5.672 | 218.6 | $3.93 \mathrm{E}-06$ |
|  | PBE0 | aug-cc-pVTZ | 5.994 | 206.9 | $4.02 \mathrm{E}-05$ |
|  | PBE0 | aug-cc-pVTZ | 6.098 | 203.3 | $3.32 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVTZ | 6.131 | 202.2 | $1.32 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVTZ | 6.512 | 190.4 | $1.58 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 6.566 | 188.8 | $1.07 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVTZ | 6.610 | 187.6 | 5.98E-04 |
| 2,4-dinitrophenol | PBE0 | def2-TZVPPD | 3.784 | 327.6 | $9.70 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 3.954 | 313.6 | $4.17 \mathrm{E}-07$ |
|  | PBE0 | def2-TZVPPD | 4.061 | 305.3 | $2.82 \mathrm{E}-06$ |
|  | PBE0 | def2-TZVPPD | 4.343 | 285.5 | $3.30 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 4.540 | 273.1 | $5.05 \mathrm{E}-06$ |
|  | PBE0 | def2-TZVPPD | 4.567 | 271.5 | $6.64 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 4.781 | 259.3 | $3.87 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 4.906 | 252.7 | $1.70 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 5.073 | 244.4 | $2.34 \mathrm{E}-06$ |
|  | PBE0 | def2-TZVPPD | 5.571 | 222.5 | $1.21 \mathrm{E}-05$ |
|  | PBE0 | def2-TZVPPD | 5.599 | 221.4 | $3.51 \mathrm{E}-03$ |
|  | PBE0 | def2-TZVPPD | 5.671 | 218.6 | $4.48 \mathrm{E}-06$ |
|  | PBE0 | def2-TZVPPD | 5.993 | 206.9 | $3.95 \mathrm{E}-05$ |
|  | PBE0 | def2-TZVPPD | 6.102 | 203.2 | $3.17 \mathrm{E}-02$ |


|  | PBE0 | def2-TZVPPD | 6.129 | 202.3 | 1.34E-02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PBE0 | def2-TZVPPD | 6.514 | 190.3 | $1.58 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 6.568 | 188.8 | $1.07 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 6.608 | 187.6 | $5.78 \mathrm{E}-04$ |
| 2,4,6-trinitrophenol | PBE0 | 6-311++G** | 3.815 | 324.9 | $1.30 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 3.948 | 314.1 | $1.16 \mathrm{E}-04$ |
|  | PBE0 | 6-311++G** | 3.969 | 312.4 | $2.49 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 4.048 | 306.3 | $8.05 \mathrm{E}-04$ |
|  | PBE0 | 6-311++G** | 4.431 | 279.8 | $1.24 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 4.468 | 277.5 | $5.52 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 4.540 | 273.1 | $2.52 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 4.551 | 272.4 | $1.94 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 4.614 | 268.7 | $1.20 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 4.799 | 258.4 | $2.48 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 4.918 | 252.1 | $1.50 \mathrm{E}-03$ |
|  | PBE0 | 6-311++G** | 4.984 | 248.8 | $1.13 \mathrm{E}-01$ |
|  | PBE0 | 6-311++G** | 5.264 | 235.5 | $6.73 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 5.351 | 231.7 | $7.75 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 5.430 | 228.3 | $7.11 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 5.469 | 226.7 | $1.80 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 5.495 | 225.6 | $3.42 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 5.566 | 222.8 | $2.60 \mathrm{E}-02$ |
|  | PbE0 | 6-311++G** | 5.599 | 221.4 | $1.24 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 5.651 | 219.4 | $2.70 \mathrm{E}-03$ |
|  | PBE0 | 6-311++G** | 5.738 | 216.1 | $1.81 \mathrm{E}-03$ |
|  | PBE0 | 6-311++G** | 5.794 | 214.0 | $9.04 \mathrm{E}-03$ |
|  | PBE0 | 6-311++G** | 5.844 | 212.2 | $5.19 \mathrm{E}-04$ |
|  | PBE0 | 6-311++G** | 5.958 | 208.1 | $8.10 \mathrm{E}-03$ |
|  | PBE0 | 6-311++G** | 6.012 | 206.2 | $1.87 \mathrm{E}-02$ |
|  | PBE0 | 6-311++G** | 6.079 | 204.0 | $1.47 \mathrm{E}-02$ |


|  | PBE0 | 6-311++G** | 6.116 | 202.7 | $2.44 \mathrm{E}-03$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.225 | 199.2 | $2.37 \mathrm{E}-02$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.230 | 199.0 | $5.34 \mathrm{E}-03$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.424 | 193.0 | $6.01 \mathrm{E}-03$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.437 | 192.6 | $1.61 \mathrm{E}-02$ |
|  | PBE0 | $6-311++\mathrm{G}^{* *}$ | 6.628 | 187.1 | $1.69 \mathrm{E}-01$ |
| 2,4,6-trinitrophenol |  | aug-cc-pVTZ failed to converge after 300 SCF cycles |  |  |  |
|  | PBE0 | aug-cc-pVDZ | 3.821 | 324.5 | $1.36 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVDZ | 3.967 | 312.5 | $1.31 \mathrm{E}-04$ |
|  | PBE0 | aug-cc-pVDZ | 3.985 | 311.2 | $1.95 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 4.064 | 305.1 | $7.08 \mathrm{E}-04$ |
|  | PBE0 | aug-cc-pVDZ | 4.434 | 279.6 | $1.30 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVDZ | 4.475 | 277.0 | $4.82 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 4.548 | 272.6 | $4.04 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 4.561 | 271.8 | $1.25 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 4.620 | 268.3 | $1.10 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVDZ | 4.810 | 257.7 | $2.60 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVDZ | 4.920 | 252.0 | $1.68 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 4.991 | 248.4 | $1.11 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVDZ | 5.271 | 235.2 | $5.98 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 5.369 | 230.9 | $1.05 \mathrm{E}-01$ |
|  | PBE0 | aug-cc-pVDZ | 5.449 | 227.5 | $6.88 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 5.497 | 225.6 | $2.57 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 5.527 | 224.3 | $9.63 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 5.569 | 222.6 | $3.07 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 5.604 | 221.2 | $1.39 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 5.655 | 219.2 | $2.73 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 5.745 | 215.8 | $1.49 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 5.805 | 213.6 | $8.43 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 5.884 | 210.7 | $6.46 \mathrm{E}-04$ |
|  | PBE0 | aug-cc-pVDZ | 5.957 | 208.1 | $8.42 \mathrm{E}-03$ |


|  | PBE0 | aug-cc-pVDZ | 6.044 | 205.1 | 2.20E-02 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PBE0 | aug-cc-pVDZ | 6.112 | 202.8 | $1.27 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 6.120 | 202.6 | $1.65 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 6.228 | 199.1 | $2.76 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 6.249 | 198.4 | $2.68 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 6.415 | 193.3 | $6.00 \mathrm{E}-03$ |
|  | PBE0 | aug-cc-pVDZ | 6.432 | 192.8 | $1.51 \mathrm{E}-02$ |
|  | PBE0 | aug-cc-pVDZ | 6.618 | 187.3 | $1.62 \mathrm{E}-01$ |
| 2,4,6-trinitrophenol | PBE0 | def2-TZVPPD | 3.977 | 311.8 | $1.09 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 3.996 | 310.3 | $1.88 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 4.068 | 304.8 | $6.85 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 4.448 | 278.7 | $1.12 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 4.469 | 277.4 | $6.05 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 4.538 | 273.2 | $3.04 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 4.551 | 272.4 | $1.15 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 4.625 | 268.1 | $1.23 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 4.821 | 257.2 | $2.67 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 4.934 | 251.3 | $1.60 \mathrm{E}-03$ |
|  | PBE0 | def2-TZVPPD | 5.005 | 247.7 | $1.12 \mathrm{E}-01$ |
|  | PBE0 | def2-TZVPPD | 5.267 | 235.4 | 5.34E-02 |
|  | PBE0 | def2-TZVPPD | 5.371 | 230.8 | $9.88 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 5.452 | 227.4 | $7.48 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 5.493 | 225.7 | $2.39 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 5.524 | 224.5 | $1.23 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 5.572 | 222.5 | $3.40 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 5.601 | 221.3 | $1.56 \mathrm{E}-02$ |
|  | PBE0 | def2-TZVPPD | 5.675 | 218.5 | $2.36 \mathrm{E}-03$ |
|  | PBE0 | def2-TZVPPD | 5.746 | 215.8 | $7.56 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 5.811 | 213.4 | $9.31 \mathrm{E}-03$ |
|  | PBE0 | def2-TZVPPD | 5.883 | 210.7 | $5.98 \mathrm{E}-04$ |
|  | PBE0 | def2-TZVPPD | 5.966 | 207.8 | $9.23 \mathrm{E}-03$ |


| PBE0 | def2-TZVPPD | 6.042 | 205.2 | $2.25 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- |
| PBE0 | def2-TZVPPD | 6.108 | 203.0 | $1.62 \mathrm{E}-03$ |
| PBE0 | def2-TZVPPD | 6.119 | 202.6 | $1.73 \mathrm{E}-02$ |
| PBE0 | def2-TZVPPD | 6.221 | 199.3 | $2.48 \mathrm{E}-03$ |
| PBE0 | def2-TZVPPD | 6.246 | 198.5 | $2.83 \mathrm{E}-02$ |
| PBE0 | def2-TZVPPD | 6.409 | 193.4 | $7.04 \mathrm{E}-03$ |
| PBE0 | def2-TZVPPD | 6.437 | 192.6 | $1.15 \mathrm{E}-02$ |
| PBE0 | def2-TZVPPD | 6.609 | 187.6 | $1.64 \mathrm{E}-01$ |

## END OF TABLE

