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ABSTRACT: Atmospheric organic aerosols (OA) represent a
significant fraction of airborne particulate matter and can
impact climate, visibility, and human health. These mixtures
are difficult to characterize experimentally due to their complex
and dynamic chemical composition. We introduce a novel
Computational Brewing Application (COBRA) and apply it to
modeling oligomerization chemistry stemming from con-
densation and addition reactions in OA formed by photo-
oxidation of isoprene. COBRA uses two lists as input: a list of
chemical structures comprising the molecular starting pool and
a list of rules defining potential reactions between molecules.
Reactions are performed iteratively, with products of all
previous iterations serving as reactants for the next. The simulation generated thousands of structures in the mass range of 120−
500 Da and correctly predicted ∼70% of the individual OA constituents observed by high-resolution mass spectrometry. Select
predicted structures were confirmed with tandem mass spectrometry. Esterification was shown to play the most significant role in
oligomer formation, with hemiacetal formation less important, and aldol condensation insignificant. COBRA is not limited to
atmospheric aerosol chemistry; it should be applicable to the prediction of reaction products in other complex mixtures for which
reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

1. INTRODUCTION
Atmospheric organic aerosols (OA), airborne particles
comprised primarily of organic material, are estimated to
contribute up to 50% of the total particulate matter mass at
continental midlatitudes and up to 90% at forested areas.1 OA
impact climate and visibility by interacting with solar radiation,
atmospheric oxidants, and water vapor2 and are associated with
adverse effects on human health as discussed in ref 3 and
references therein. The climate, visibility, and health effects of
OA are dependent on their chemical composition.4−6 However,
the diversity of OA formation and growth mechanisms makes
detailed molecular chemical composition of OA difficult to
predict by traditional modeling or characterize by experimental
methods. During their residence time in the atmosphere, OA
undergo chemical aging processes7,8 that further enhance
molecular complexity through, for example, the formation of
nitrogen-containing organic compounds (NOC).9−11

Recent advances in high-resolution mass spectrometry (HR-
MS) have enabled simultaneous detection of hundreds of
individual molecules in OA.9,12−15 HR-MS tools are useful in
providing the molecular formulas for OA constituents. Ion
fragmentation patterns observed in tandem mass spectrometry

(MSn) experiments provide additional information about the
structures. However, interpretation of MSn data is complicated
by the presence of multiple structural isomers and lack of
sufficiently diagnostic fragmentation patterns. In previous work,
reliable structural information could only be extracted for the
low molecular weight (MW) species16,17 and homologous
oligomers18−20 present in OA, leaving the structures of the
majority of complex oligomers uncharacterized.
HR-MS experiments suggest that in many cases, oligomeric

compounds in atmospheric OA are produced from repetitive
reactions between the OA constituents.17,20−22 There is strong
evidence that condensation reactions such as esterification and
aldol condensation18,20,23−28 and addition reactions such as
hemiacetal formation29−31 are quite common in both organic
aerosols and in aqueous solutions of OA. Advanced computa-
tional approaches are needed for predicting the OA
composition using a bottom-up approach, in which the starting
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low-molecular weight compounds are known from experiments,
and reaction rules for combining these compounds into
oligomers can be unambiguously defined.
This work describes the first application of a Computational

Brewing Application (COBRA) to modeling oligomerization
products observed in the detailed composition of OA. Figure 1
shows a diagrammatic representation of COBRA, which is a
customizable simulation engine for chemical reactions. Prior
work from our group related to predicting the mechanisms of
organic chemical reactions has focused on a rule-based
approach with broad knowledge of general organic chemistry32

or a machine learning approach to reaction prediction based on
ranking mechanistic steps by productivity.33 COBRA differs
from these approaches in that it is optimized to simulate the
evolution of a complex mixture by combinatorial computation
of many thousands of chemical reactions between mixture
constituents, based on a chosen pool of starting (seed)
compounds and specific reaction mechanisms. For the case
study presented in this work, the formation of a large set of
experimentally observed high-MW oligomeric products in OA
derived from the photooxidation of isoprene20,22 is modeled by
considering chemical transformations of a basic set of
monomers through the following oligomerization reactions:
esterification, aldol condensation, and hemiacetal formation.
We demonstrate that COBRA succeeds at modeling relevant
oligomerization chemistry, predicting and visualizing high-MW
compound structures, and predicting unique reaction products
in OA. More broadly, the COBRA approach is applicable to
studying the evolution of a wide range of organic mixtures as
long as the starting components and reaction mechanisms can
be suggested.

2. METHODS

2.1. COBRA. Chemical structures are input into COBRA
using the widely used chemical string representation SMILES.34

Reaction transforms are defined using the reaction transform
language SMIRKS.35 The SMIRKS language is a superset of
SMILES and can be used to define reaction transforms to an
arbitrary degree of specificity. We leverage the programming
language Python in conjunction with OpenEye’s OEChem
library36 to process the input SMILES and SMIRKS into
predicted products. Standard valence rules are explicitly

programmed into the reaction transforms in order to predict
chemically meaningful structures. Specifically, R-groups in the
reactions shown in Figure 1 were allowed to be alkyl or acyl
groups but not hydrogen alone. Filters can be imposed to
prevent compounds with certain properties from participating
in reactions or from being included in the pool of final
products.
The simulation includes the following iterative steps. 1) For

each molecule and each pair of molecules in the reactant pool,
all unimolecular reaction transforms and all bimolecular
transforms, respectively, are applied. Identical reactions already
performed in the previous iterations are recognized and
skipped. 2) The product molecules are filtered. For this
simulation, we automatically filter out any molecule with
greater than 40 heavy (C, O, N) atoms. This filter restricts the
molecular weights of the products below approximately 500 Da,
the limit at which molecular assignments made with 0.1 mDa
accuracy can be uniquely determined for CcHhOoNnSs
species.37 This restriction significantly decreased the model
run time while still capturing the chemistry of the most
abundant compounds in isoprene high-NOx SOA.22 3)
Molecules that were not filtered out during the previous step
are added back into the reactant pool, and the system returns to
step one. The simulation is complete either after the requested
number of iterations has passed or after a specified number of
unique reactions has been simulated (30,000 reactions for the
full simulation and the exclusion simulations, in this study).
Results can then be conveniently visualized and searched for
specific chemical structures matching any specified structural
criteria. Additionally, we can compute the sequence of reactions
that led to a given product’s formation.

2.2. Experimental Methods. Isoprene OA was photo-
chemically generated in a 5 m3 Teflon chamber, as described
previously.20 Samples were generated in dry air, under high-
NOx (VOC:NOx <1) conditions and in the absence of
inorganic seed particles. H2O2 was used as an OH precursor.
The initial mixing ratio of isoprene was 250 ppbv (parts per
billion by volume). Blank samples were produced in an
identical manner as OA samples, without UV radiation.
Samples were collected on Teflon filters (0.2 μm pore size,
Millipore), vacuum sealed, and frozen prior to analysis.
Negative ion mode direct injection ESI (tip voltage 4 kV)

Figure 1. A schematic representation of COBRA. COBRA converts a set of seed molecules into a set of predicted products using predefined
chemical reaction rules. This process is repeated for several iterations, with predicted products going back into the pool of reacting molecules after
each step. The four reactions used in this work are shown in the center panel, and the full list of 27 seed molecules is shown in Table 1.
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was used as an ionization method for solvent-extracted OA
samples. The solvents used for analysis were water and
acetonitrile (both HPLC grade, Fluka) at a 1:1 volume ratio.
Mass analysis was done with a high-resolution linear ion trap
(LTQ-) Orbitrap (Thermo Corp.) at Pacific Northwest
National Lab (PNNL) Environmental Molecular Science
Laboratory facility (EMSL), with a mass resolution of 60,000
m/Δm at m/z 400. MSn studies were performed in the LTQ,
with mass selection in the 0.5 m/z range and collision-induced-
dissociation energies of 20−40 energy units. Product ions of
MSn were analyzed in the Orbitrap.

3. RESULTS AND DISCUSSION

Table 1 lists the seed molecules for the simulation. These low-
MW species have been identified as important building blocks
in the formation of isoprene photooxidation OA.22 The
majority of these molecules have been detected in isoprene
OA (ref 38 and references therein) and are primarily
multifunctional carbonyl, alcohol, and carboxyl compounds
derived from the oxidation of isoprene with the hydroxyl radical
(OH).18,22,39−46 Some of these molecules have sufficiently high
vapor pressure to exist primarily in the gas phase. For example,

glycolaldehyde has a room temperature vapor pressure of 0.028
Torr47 and may participate in aerosol mass-growth reactions
initiated in the gas- or heterogeneous phase. Note that glyoxal
is not included among the seed molecules used in these
simulations because it was not found among the monomer
units inferred from mass spectrometry of isoprene oxidation
products as described in ref 22. The 3-nitrate ester of 2-
methylglyceric acid (2MGA)18,20,27,45 represents the sole NOC
in the list of seed molecules. Available information about NOC
monomers is limited due to the small number of studies of
NOC composition in the literature (ref 22 and references
therein).
COBRA was used to simulate the evolution of a virtual OA

mixture by applying the four reaction transforms shown in
Figure 1 to the set of 27 starting molecules in Table 1. The
resulting product pool contained 135,107 predicted structures
after performing 30,000 unique reactions, representing a total
of 758 unique elemental formulas of the type CcHhOoNn with
MW < 500 Da. The 2 orders of magnitude difference between
the number of structures and elemental formulas reflects a large
number of predicted structural isomers. The experimental HR-
MS data from ref 22 (Table S1 in the Supporting Information)

Table 1. Seed Molecules Used for the COBRA Simulations Described in This Work
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contains 464 neutral elemental formulas, and 323 of these
formulas (70%) were predicted by COBRA. Figure 2 shows the

experimental HR-MS spectrum separated into two panels. The
first panel shows all HR-MS peaks in the experimental
spectrum that were predicted by COBRA (Figure 2A), and
the second one shows peaks that did not appear in the COBRA
output (Figure 2B). As Figure 2 demonstrates, the 70% fraction
of the experimentally observed peaks predicted by COBRA
represents the most abundant compounds with MW < 500 Da.
The remaining 30% fraction has average peak intensities that
are more than an order of magnitude smaller compared to the
average peak intensities associated with the successfully

predicted compounds, suggesting that COBRA captures the
essential chemistry producing oligomers in isoprene high-NOx
OA. The high degree of overlap between the predicted and
observed formulas confirms that the oxygenated hydrocarbon
seed molecules proposed in our previous work are the relevant
oligomer building blocks in this type of OA.22 The fact that a
relatively small set of modeled reactions was sufficient to
account for roughly 70% of the HR-MS peaks suggests that the
oligomerization chemistry in isoprene OA is well constrained.
The fraction of the experimentally observed compounds that

are correctly predicted by the simulation can be a misleading
metric of success in some cases. For example, if the simulation
were significantly overdefined, and generated every possible
CcHhOoNn formula (∼105) allowed by the valence rules, this
fraction would become 100%. Therefore the reverse compar-
ison of the fraction of predicted peaks that show up in the
experiment is just as important. In the present case, 43% of
predicted formulas correspond to compounds detected by HR-
MS, and the remaining 57% are not observed. This level of
agreement can be viewed as good, considering that the
simulation does not use any kinetics restrictions and predicts
the formation of compounds that may be below the limit of
detection of HR-MS.
It is remarkable that a total of 62 NOC molecular formulas

were predicted stemming from 2MGA-3-nitrate alone,
representing 41% of the total NOC observed in the isoprene
OA sample in the m/z 120−500 range (Figure 2A). Note that
this particular simulation’s ability to predict NOC compounds
is limited because only a single NOC seed molecule is included.
Nonetheless, the data confirm that 2MGA-3-nitrate is a prolific
oligomer building block in isoprene OA that produces a variety
of products through oligomerization in the condensed
phase.18,20,27,45

Since structural complexity increases with molecular size, the
number of structural and stereo isomers that can be produced
by oligomerization reactions also grows exponentially with
increasing mass of the individual products (Figure 2C). For the
323 experimentally observed molecular formulas, COBRA
predicts 102,650 unique structures, with the number of isomers
ranging from 1 to nearly 3,000. The apparent decrease in the
number of hits as MW approaches 500 Da is a result of
filtering; we artificially limit structures in the product pool to
those with less than 40 heavy atoms and do not consider
structures with molecular weights in excess of 500 Da. Despite
the large number of predicted isomers, the simulation results
help constrain possible structures, especially for lower-MW
compounds. For example, over 1,000 unique molecular
structures associated with a molecular mass of 142.063 Da,
assigned to C7H10O3, can be retrieved from Internet-based
chemical inventories (e.g., SciFinder). In contrast, COBRA

Figure 2. Comparison between the HR-MS experiment and COBRA
predictions. Panel (a) shows the HR-MS peaks that are predicted by
COBRA (70%). Panel (b) shows the remaining 30% of HR-MS peaks
that are not predicted by our simulation. In both panels, NOC peaks
are colored green. Panel (c) indicates the number of isomeric
structures predicted at each observed molecular mass.

Table 2. Small Fraction of the Full Output from COBRAa

product mass (Da) product formula hits (n) SMILES # 1 SMILES # 2 SMILES # n

128.047 C6H8O3N0 4 CC(C)C(O)OCCO CC(C)C(O)OC(O)C CC(O)COC(O)CC
130.027 C5H6O4N0 4 CC(O)C(O)OCCO CC(O)C(O)OC(O)C CCC(O)OCC(O)O
132.042 C5H8O4N0 9 CCC(O)OC(O)CO CCC(O)OCC(O)O CC(C(O)O)OC(O)C
136.037 C4H8O5N0 2 C(C(O)OC(O)CO)O C(C(O)OCC(O)O)O
142.063 C7H10O3N0 2 CCC(O)OC(O)C(C)C CC(C)C(O)OCC(O)C
146.022 C5H6O5N0 8 CC(O)C(O)OC(O)CO CC(O)C(O)OCC(O)O CC(O)OC(CO)C(O)O

aFor each observed product, several different isomers (SMILES structures) are predicted (number of hits). The full number of hits for each mass is
shown in Figure 2C.
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predicts only two structures of C7H10O3, thereby dramatically
reducing the complexity (Table 2). This represents more than a
one hundred-fold increase in the level of confidence in
assigning molecular structures to a given formula obtained by
HR-MS. Even at high masses, COBRA predictions remain
useful because the structural information for high-MW
compounds is not readily available from chemical databases,
and this type of modeling is a practical step toward
understanding the possible structures of large oligomers.
A few published studies used MSn fragmentation data to

determine structures of the oligomers in isoprene high-NOx
SOA.18,19,22 All molecular structures described in the previous
studies match structures predicted by COBRA. To further test
the validity of the COBRA predictions, we made a comparison
to MSn studies previously performed by our group of NOC
oligomers observed in SOA generated from isoprene photo-
oxidation.22 Figure 3 shows the predicted structures of two

NOC oligomers, C8H13NO9 (267.059 Da) and C14H20NO13
(411.101 Da), that are most consistent with MSn experiments.
The MSn experiments were performed using the negative ion
mode; therefore, the molecular masses of the detected
compounds are those of deprotonated molecules. Oligomer
fragmentation is often characteristic of the functional groups
and monomer units present within the compound. For
example, HNO3 and CH3NO3 are characteristic MSn losses
from organic nitrates, and C4H6O3 is a characteristic loss from
the carbonyl ester unit of 2MGA.18,22

For a given molecular formula, the proposed structures based
on MSn experiments described in ref 22 match at least one of
the structures predicted by COBRA. We note that structural

isomers may not have distinct fragmentation patterns, and
therefore it is possible that the experimental MSn data
represents several structural isomers predicted by COBRA.
COBRA predicted four isomeric structures for C8H13NO9, and
at least one predicted structure is consistent with the
fragmentation pattern produced by MSn studies. For
C14H21NO13, at least one out of 44 predicted structures is
consistent with the MSn fragmentation pattern. Therefore, it is
reasonable to hypothesize that other structures predicted by
COBRA may be present in the OA, perhaps but not necessarily,
in lower quantity than the most abundant isomer.
To elucidate which seed molecules were the most important

as oligomer building blocks for isoprene OA, we performed 27
“exclusion” simulations, each with a different seed molecule
omitted. Each exclusion simulation was limited to the same
number of reactions (30,000). The total number of
experimental molecular formulas recovered in each case was
compared against a simulation in which no seed molecules were
omitted. The “exclusion percent” was calculated as a percent
reduction in the number of predicted formulas matching
experimental formulas. The highest exclusion percent (19%)
was for the 3-nitrate ester of 2-methylglyceric acid, consistent
with its special role of being the sole NOC precursor.
Specifically, the removal of 2MGA-3-nitrate eliminated all
NOC oligomers from the product pool. Removal of other seed
molecules resulted in smaller variation in the number of
predicted formulas, ranging from −6 to 6%. Note that because
of the fixed number of reactions in these simulations, an
exclusion of a less significant contributor to chemistry can
actually lead to a slight increase in the total number of
predicted formulas, yielding a negative exclusion percent. None
of the nitrogen-free compounds appeared to stand out from the
rest, suggesting some redundancy in the pool of seed molecules.
The redundancy in seed molecules lowered the percent overlap
between simulation and experiment. These results highlight the
need for future work in determining missing precursors and
reaction mechanisms. In general, this type of exclusion analysis
is useful for assessing the contribution of a single molecule to
the total product pool, e.g. the importance of glyoxal in
heterogeneous reaction with various OA constituents,48−51 or
the contribution of first vs second generation VOC oxidation
products to producing condensable organic compounds.
We performed additional exclusion simulations, in which one

of the four reactions shown in Figure 1 was disabled. The
results of the simulations based on the three remaining
reactions were compared to the results of the full simulation.
Table 3 lists the percent reduction in the number of
experimentally observed molecular formulas recovered by the

Figure 3. Experimental MS2 fragmentation spectra for precursor (I)
ions (a) C8H12NO9

− and (b) C14H20NO13
−. Two structures predicted

by COBRA that are consistent with the fragmentation patterns are
overlaid on the spectra. Product ions are obtained from fragmentation
at the dashed bonds (after losses of neutral molecules). Product ions
for (a) are as follows: II. m/z 203.056 (I-HNO3); III. m/z 189.040 (I-
CH3NO3); IV. m/z 164.020 (I-C4H6O3); V. m/z 119.035 (I-
C4H5NO5). Product ions for (b) are as follows: II. m/z 347.098 (I-
HNO3); III. m/z 333.082 (I-CH3NO3); IV. m/z 308.062 (I-C4H6O3);
V. m/z 307.082 (I-C3H5NO3).

Table 3. Results from an Exclusion Analysis, in Which One
of the Four Reactions Shown in Figure 1 Is Disabled

reaction
transform reaction type

percent reduc-
tion in experi-
mentally ob-

served formulas

percent reduc-
tion in theoret-
ically predicted

formulas

percent reduc-
tion in theoret-
ically predicted

structures

1 esterification 40.9 12.8 37.8

2 aldol conden-
sation

0.3 0.7 5.6

3 elimination of
water from
aldol con-
densates

0 1.5 0.01

4 hemiacetal for-
mation

10.2 −0.1 46.7
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simulation, the percent reduction in the number of theoretically
predicted molecular formulas, and the percent reduction in the
number of theoretically predicted structures generated by the
simulation. The esterification reaction (Reaction 1) played the
most significant role in recovering experimentally observed
formulas, with an exclusion percent of 40.9%, followed by the
hemiacetal formation reaction (Reaction 4) with an exclusion
percent of 10.2%. The esterification and hemiacetal formation
reactions also made the largest contributions to the total
number of theoretically predicted structures. Exclusion of
esterification from the simulation reduced the number of
structures in the COBRA output by 37.8%, while exclusion of
hemiacetal formation resulted in a 46.7% decrease. Although
hemiacetal formation is prolific at generating theoretical
structures, the results demonstrate that esterification is the
most important reaction in promoting oligomerization in
isoprene OA, while hemiacetal formation is of secondary
importance. These results are consistent with a previous study,
wherein reducing aerosol liquid water content changed the
composition of isoprene high-NOx SOA most drastically by
hindering the esterification reaction.20 They are also consistent
with the fast and efficient reactions of OA compounds
containing carboxylic acid groups and carbonyls with alcohols
observed in ref 52. In contrast, aldol condensation (Reactions 2
and 3) does not appear to play a significant role in forming the
oligomers. Removal of either Reaction 2 or Reaction 3 resulted
in a small reduction in the number of theoretically produced
structures and recovered HR-MS formulas.
Once a pool of COBRA-generated simulation products is

available, it can easily be mined for desired products or classes
of products. For example, we are interested in the potential for
isoprene photooxidation to generate α,β-unsaturated aldehydes,
a class of genotoxic compounds found in cigarette smoke and
air pollution.53−58 The most common atmospheric α,β-
unsaturated aldehydes with adverse health effects are gas-
phase species such as acrolein (C3H4O).

59 However, adverse
health effects are also strongly linked to inhalation of particulate
matter,3,60−64 which contains more complex and poorly
characterized organics. COBRA predicted 6,131 structures
corresponding to α,β-unsaturated aldehydes in the isoprene
photooxidation SOA data set. This large set of structures can be
filtered further, by mass, O/C ratio, or any other property
required to yield a focused set of predicted structures. Applying
a computational tool like COBRA along with the molecular-
level experimental characterization of products is a powerful
first step to identifying condensed-phase atmospheric toxins.
One limitation of COBRA is that it does not currently

include kinetics information and therefore cannot model the
relative abundances of individual products. This limitation may
be important in cases where the product branching ratios from
a particular reaction are dissimilar or dependent on atmospheric
conditions, in which case the results from COBRA will
artificially enhance the importance of noncompetitive products.
For example, in the absence of nitrogen oxides (NOx) the same
OH-initiated oxidation chemistry produces more hydroper-
oxides and fewer carbonyl products.65 However, a scaling factor
can be incorporated in the transformation rules if the branching
ratios are known or can be estimated with ab initio methods.
For the comparison with the ESI-based MS data, this is not a
major limitation because there are no simple relationships
between the detection efficiency in ESI and the concentration
of the analyte species.66

Applying COBRA to the simulation of oligomerization in
isoprene OA is a good example of the utility of computational
tools for understanding complex natural mixtures and verifying
experimental data. An important strength of COBRA is its
ability to handle a complex simulation and generate a large
number of predicted compounds. While the combinatorial
explosion of generated structures means computation time is
currently on the order of several days, this time can be
significantly reduced in future work by using parallel computing
algorithms. If pertinent experimental data are available, direct
comparison between the observed and predicted compounds
can be made to better constrain chemistry and chemical
structures. Furthermore, as COBRA reduces the number of
possible structures available for a given chemical formula, the
predicted structures may be useful for discriminating isobaric
species in a mass spectrum. Applying a small set of
transformation rules to predict an experimentally determined
high-resolution mass spectrum may become a powerful tool for
better understanding the chemistry of complex systems
comprised of hundreds or thousands of individual compounds.
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