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ABSTRACT: Northern China is regularly subjected to intense
wintertime “haze events”, with high levels of fine particles that
threaten millions of inhabitants. While sulfate is a known major
component of these fine haze particles, its formation mechanism
remains unclear especially under highly polluted conditions, with state-
of-the-art air quality models unable to reproduce or predict field
observations. These haze conditions are generally characterized by
simultaneous high emissions of SO2 and photosensitizing materials. In
this study, we find that the excited triplet states of photosensitizers
could induce a direct photosensitized oxidation of hydrated SO2 and
bisulfite into sulfate S(VI) through energy transfer, electron transfer, or
hydrogen atom abstraction. This photosensitized pathway appears to
be a new and ubiquitous chemical route for atmospheric sulfate
production. Compared to other aqueous-phase sulfate formation pathways with ozone, hydrogen peroxide, nitrogen dioxide, or
transition-metal ions, the results also show that this photosensitized oxidation of S(IV) could make an important contribution to
aerosol sulfate formation in Asian countries, particularly in China.

■ INTRODUCTION

Fine particulate matter, a complex cocktail of inorganic and
organic species, has a central role during persistent haze events
in the North China Plain. While sulfate (SO4

2−) is ubiquitous
and a key component, its production from SO2 is still uncertain.
While gaseous SO2 can be oxidized through its reaction withOH
radicals, it also undergoes significant multiphase processing
through reactions involving a variety of dissolved oxidants such
as ozone (O3), hydrogen peroxide (H2O2), and transition-metal
ions (TMIs).1−3 However, the detailed chemical mechanism
under heavily polluted conditions remains uncertain. Current
atmospheric observations highlighting high sulfate production
during severe haze events4 cannot be reproduced by
atmospheric models.5 To close this gap, new chemical pathways
have been suggested involving an interfacial SO2 oxidation on
acidic microdroplets,6 SO2 triplet state chemistry,7−9 or
oxidation at higher pH via a reaction with NO2.

10,11 In sum,
despite intense research efforts, important missing processes
hamper our abilities to clearly elucidate the formation of one of
the most important components of haze particles.
Photosensitized chemistry has been recently discussed as

triggering novel chemistry in tropospheric particles,12 but its role
in S(IV) oxidation under polluted conditions has not been
explored. A photosensitizingmolecule will absorb solar radiation
and create an excited (triplet) state T* from which various

chemical pathways can be initiated that would otherwise not
take place at the ground state.13 Biomass burning for residential
heating, typical for China during haze events, is in fact a likely
source of compounds bearing functional groups capable of
photosensitized oxidation as observed in humic-like substances
(HULIS).14 We therefore investigated whether photosensitized
oxidation of SO2 may occur under atmospheric conditions, as an
attempt to close some gaps in our knowledge of sulfate
formation under polluted conditions.

■ MATERIALS AND METHODS

All experiments were conducted at room temperature in the
range of 295−300 K.

Chemicals. All chemicals were used as purchased:
acetophenone (Sigma Aldrich, 98%), flavone (Sigma Aldrich,
≥99.0%), xanthone (Sigma Aldrich, 97%), 4-(benzoyl)benzoic
acid (4-BBA, Sigma Aldrich, 99%), sodium sulfite (Sigma
Aldrich, ≥98%), sulfuric acid (Sigma Aldrich, 95−97%), humic
acid (HA, Sigma Aldrich, technical grade), humic acid salt
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(HAS, Sigma Aldrich, technical grade). In addition, all solutions
were freshly prepared using ultrapure water (Elga Purelab
Classic, 18.2 MΩ cm). In order to promote dissolution, 4-BBA
solutions were stirred in an ultrasonic bath for 10 min, and the
solutions of xanthone and flavone were agitated for 2 h in the
dark, both at ambient temperature. For the chromatographic
analysis, acetonitrile, water, and formic acid were all of Optima
LC/MS grade, provided by Fisher Scientific. O-(2,3,4,5,6-
Pentafluorophenyl) methylhydroxyl amine hydrochloride
(PFBHA, ≥99.0%) was purchased from Fluka. In addition,
SO2 (10 ppm, mixing with pure N2, Linde, France) and N2
(99.999%) were used in this study.
PM2.5 Sample Collection and Extraction. 24 h ambient

aerosol samples (PM2.5 masses in the range of 27−46 mg) were
collected onto 90 mm prebaked quartz-fiber filters (Whatman
Company, UK) during December 10 to 14, 2018 using a
midvolume sampler (TH-150A, Wuhan Tianhong, China)
operating at 100 L min−1. The sampling site was located in
rural Wangdu (38°42′N, 115°08′ E), Baoding, Hebei Province,
surrounded by grasslands and farms, but easily influenced by
industrial and urban plumes from megacities such as Beijing,
Tianjin, and Shijiazhuang. After sampling, filters were stored at
−20 °C in a freezer before further analysis.
Each quartz filter was extracted with three subsequent 15 mL

extractions of ultrapure water and agitated for 25 min on an
orbital shaker set at 1000 rpm. After filtering through a 0.2 μm
polytetrafluoroethylene membrane (13 mm, Pall Corp., USA)
using a glass syringe, the combined ambient aerosol extracts (AA
as the abbreviation) were used to conduct the photochemical
experiments described below. In addition, in order to character-
ize chromophores and carbonyl-containing compounds, these
extracts were analyzed by using a UPLC/DAD/(+/−)HESI-
HRMS platform, which is the combination of ultra-high
performance liquid chromatography (UPLC, Dionex 3000,
Thermo Scientific, USA), a diode array detector (DAD), and an
Orbitrap high-resolution mass spectrometer (HRMS, Q
Exactive, Thermo Scientific, Bremen, Germany) using heated
electrospray ionization (HESI). More information about
chemical analysis of filter samples is illustrated in the Supporting
Information.
Quartz Cell Experiments. A 14 mL cylindrical quartz cell

(5 cm length and 2 cm diameter) mounted 13 cm away along its
axis onto a xenon lamp (150W; LOT-QuantumDesign, France)
was used to perform the experiments. A quartz water filter of 5
cm length and a Pyrex filter were mounted in front of the lamp to
remove infrared irradiation and short wavelengths (λ < 290 nm).
The spectral characteristics of this system can be found in Figure
5 of Ciuraru et al.15 In order to maximize the surface to volume
ratio (1.4 cm2 cm−3), the cell was half-filled with 7 mL of pure
water, 75 μM 4-BBA, 70 mg L−1 HA, 70 mg L−1 HAS, or AA
(diluted by adding 1 mL ultrapure water or water acidified with
sulfuric acid (H2SO4) to a desired pH, see below). An incoming
diluted SO2 gas flow (around 83 ppb after diluting by pure air)
with a flow rate of 300 mL min−1 was injected through the cell,
further diluted by adding 200 mL min−1 N2, and then analyzed
afterward using a SO2 analyzer (Thermo, 43i). At the beginning
of all experiments, higher concentrations of SO2 were injected
into the reactor in order to more rapidly reach the SO2 gas/
liquid equilibrium. In other words, these solutions were
preconditioned with flowing gaseous SO2 to establish Henry’s
law and acid−base equilibria, producing hydrated SO2, HSO3

−,
and SO3

2−, according to eqs 1−3:

FSO SO2 (g) 2 (aq) (1)

F KSO H O HSO H (p 1.88 at 298K)2 (aq) 2 3 a+ + ≈− +

(2)

F KHSO SO H (p 7.22 at 298K)3 3
2

a+ ≈− − +
(3)

Sulfate concentrations in the liquid phase were measured
using ion chromatography (IC, Metrohm, 881 Compact IC Pro
- Anion, Switzerland). H2SO4 was added to adjust the pH of HA,
HAS, and AA1 solutions, which were 4.0, 4.6, and 4.6,
respectively. The pH values of 4-BBA and AA2 solutions were
4.4 and 6.2, respectively, without adding H2SO4. Due to the high
pH of the AA2 solution, SO2 concentrations in the gas/liquid
phase did not reach the equilibrium even after injecting higher
concentrations of SO2 for over an hour. In addition, the 4-BBA
solutions were degassed by bubbling pure N2 around 30 min at a
flow rate of 25 mL min−1, which was also used to conduct the
same experiment. Meanwhile, the incoming N2 instead of pure
air went through the quartz cell continuously. In all these
experiments, the solutions were irradiated for 50 min, except for
pure water (irradiated for 40 min).

Aerosol Flow Tube Experiments. Experiments were
carried out at atmospheric pressure by using a horizontal
jacketed aerosol flow tube (AFT, 6 cm internal diameter and 180
cm length) made of Pyrex. The air flowing through the reactor
was kept at a constant temperature of 293 ± 1 K by means of a
circulating water bath. There are five UV lamps (Cleo, Philips,
Netherlands) surrounding the flow tube with a continuous
emission spectrum over 300−420 nm and total irradiance from
0.75 × 1015 to 3.77 × 1015 photon cm−2 s−1.16 4-BBA aerosols
were generated from an aqueous solution (0.15 mM) by means
of a constant-output atomizer (TSI model 3076). A portion of
the aerosol flow (∼0.33 L min−1) was dried using a silica gel
diffusion dryer, and monodispersed particles with diameters of
70 or 80 nmwere selected for analysis with a differential mobility
analyzer (DMA, TSI model 3081, impactor size 0.0508 cm),
then mixed with SO2 gas (22mLmin−1,∼630 ppb after mixing),
and injected into the AFT. The relative humidity measured at
the outlet of the AFT was in the range of 25−27%. Seed particle
concentration was approximately 800 particles cm−3, and the
residence time was ∼15 min. A compact time-of-flight aerosol
mass spectrometer (AMS, Aerodyne Inc.) was used to sample
and analyze aerosols upon exiting the AFT. The obtained mass
spectra were analyzed by using the AMS analysis software
Squirrel version 1.60P and Pika version 1.20P. Water particles
instead of 4-BBA particles were used as control experiments.
During the control experiments, the silica gel diffusion dryer was
moved from its normal position in front of the AFT to a position
downstream from the AFT and in front of the AMS to allow
water particles to enter the AFT without evaporation. In
addition, all water particles were injected into the AFT without
being size-selected.

Pulsed Laser Excitation Experiments. The transient
absorption spectra of the excited acetophenone, flavone,
xanthone, 4-BBA, and HULIS (extracted from the ambient
aerosols) were measured using a pump−probe system described
earlier,17 and the experimental setup is shown in Figure S1. The
third harmonic (266 nm, pulse width ∼7 ns) of a Nd:YAG laser
(Surelite II 10, Continuum) was used as an excitation source,
operating in a single-shot mode. During these experiments, the
laser pulse energy was limited to 10 mJ per pulse (∼6 mJ cm−2)
in order to reduce the undesirable photolysis of the photo-
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sensitizer and avoid possible interferences from products. To
avoid any interference or electron transfer with oxygen, the
photosensitizer solutions were deoxygenated by bubbling argon
through them for at least 20 min. The setup and principle of the
pulsed laser system are described in detail in the Supporting
Information.
For the kinetic measurements, the probe wavelengths for the

transient absorption decays of the acetophenone, flavone,
xanthone, and 4-BBA triplet states were 360, 350, 590, and
560 nm, respectively, which were around the corresponding
maxima in the transient absorption spectra. T* extracted from
the ambient aerosols had strong absorption in the wavelengths
of 460, 480, and 500 nm, which were employed and averaged for
kinetic measurements. Typically, signals from 30 repeated pulses
were averaged for each observation wavelength.
All experiments were conducted under pseudo-first-order

conditions due to a large excess of the quencher (i.e., S(IV))
compared to the initial photosensitizer concentrations. The
absorption decay traces of the photosensitizer triplet state were
fitted well with a single exponential process:

y a be k t1= + −
(4)

where k1 (s
−1) is the pseudo-first-order rate constant obtained

from the slope of a logarithmic plot of the transient signals, and a
reflects the potential deviation of the baseline after excitation
(i.e., the absorption does not return to zero when absorbing
products are produced). The lifetime of T* was defined as

k
1

1
τ =

(5)

In the bulk aqueous experiments in this study, in order to
investigate the reactivities of hydrated SO2 and HSO3

− with T*,
the sodium sulfite solution was added into the photosensitizer
solutions, and then the pH of the solutions was decreased to 1.8
or 2.6 by adding a H2SO4 solution. Under these conditions,
S(IV) existed mainly as hydrated SO2 and HSO3

−. The
quenching rate coefficients for T* in the presence of S(IV)
were determined by the Stern−Volmer equation (eq 6):

T
t

k k k T

k T

d
d

( SO H O HSO )q q0 (SO H O) 2 2 (HSO ) 3

obs

2 2 3
− [ *] = + [ · ] + [ ] [ *]

= [ *]

·
−

−

(6)

where k0 corresponds to the rate coefficient of T* decay in the
absence of oxygen or other quenchers, and kq(SO2·H2O) and

kq(HSO3
−
) are the rate coefficients for the quenching by hydrated

SO2 and HSO3
−, respectively. It is important to underline that

these rate constants are dependent on temperature and also pH.

■ RESULTS
Figure 1A shows the effect of such chemistry at 295−300 K, the
diluted SO2 gas flowing through a 14 mL reactor filled halfway
with aqueous solutions containing different photosensitizers and
illuminated with light-simulating actinic irradiation (λ > 290
nm). Various types of atmospherically relevant photosensitizing
chemicals were used, namely, 4-(benzoyl)benzoic acid (4-BBA),
humic acids and their salts (HA and HAS), and finally extracts
from filter samples collected in a rural area (38°42′ N, 115°08′
E) close to Beijing during haze events in winter 2018 (AA1 and
AA2, which differ by their pH; pH = 4.6, acidified with H2SO4,
and 6.2, respectively). These filters were shown, by UPLC/
DAD/(+/−)HESI-HRMS, to be chemically complex, with

Figure 1. SO2 loss and sulfate formation. (A) Time traces of gaseous
SO2 loss above aqueous solutions of 4-BBA, HA, HAS AA1, and AA2.
(B) Corresponding sulfate production. AA1 and AA2 differ by their pH
and hence their capacity to store S(IV). Sulfate concentrations were
blank-corrected for the HA, HAS, AA1, and AA2 experiments. *The
concentration was below the detection limit. (C) Sulfate production
measured by an aerosol mass spectrometer in 4-BBA particles with
diameters of 70 and 80 nm in the aerosol flow tube in a separate
experiment. Residence time is 15 min.
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more than 70 carbonyl-containing compounds and a large
amount of light-absorbing chromophoric compounds (Figure
S2 and Database S1).
These solutions were initially exposed to a gaseous flow of

SO2 until steady SO2 concentrations were reached at the outlet
of the reactor, with gas-phase concentrations in the range from
40−100 ppbv. During these conditioning periods, Henry’s law
equilibrium and acid−base dissociation were taking place,
leading to the production of hydrated SO2, HSO3

−, and
eventually SO3

2−. The product distribution is highly pH-
dependent, with SO2 being prevalent at pH < 2, HSO3

−

between 3 and 6, and finally SO3
2− above pH = 718 (see pKa

values in eqs 2 and 3).
Once the outlet gaseous SO2 concentration was stabilized

(with the exception of AA2 due to its higher pH), the light was
switched on, and for all samples, we observed a sudden loss of
gas-phase SO2 associated with synchronous sulfate production
in the liquid phase (see Figure 1B). Such a loss is a clear
indication that light initiated the conversion of hydrated SO2 or
HSO3

− to SO4
2−, and hence the oxidation proceeds from S(IV)

to S(VI).
SO2 consumption was not observed in the absence of the

photosensitizing compounds, that is, no loss on irradiated pure
water. This result, combined with the poor light absorption of
SO2 in the wavelength region (λ > 295 nm) considered here,
shows that in this case the triplet-state reaction of SO2with water
plays a minor role. We attributed the loss of gaseous SO2 to a
chemical reaction between dissolved S(IV) and the photo-
sensitizer triplet state or oxidants produced from the excited
state and oxygen. In fact, it has been shown that both humic
acids and 4-BBA are sources of HO2 (and hence OH) radicals
when exposed to light.13,19 The formation of such radicals could
then readily react with dissolved S(IV) and lead to the
observations depicted in Figure 1. However, similar trends
were observed when the carrier gas was changed to pure
nitrogen and all solutions were deoxygenated. This clearly rules
out the influence of secondary oxidants, produced in the
solution, but points toward a direct reaction of S(IV) and the
excited state of the photosensitizer.
To test whether such a sulfate production could also be

observed under different conditions, we performed aerosol flow
tube experiments. Here, a bulk solution containing 4-BBA was
nebulized producing aerosols, and then aerosols were dried, size-
selected (70 or 80 nm), and injected into the flow tube with a
residence time of ∼15 min. SO2 was injected at around 630 ppb
in pure air acting as the carrier gas. At the reactor outlet, particles
were chemically characterized by means of an aerosol mass
spectrometer (AMS, Aerodyne), which is highly sensitive to
sulfate. This is a similar approach to the one previously used for
investigating photosensitized organic aerosol growth.20 As
shown by Figure 1C, once the lights were switched on, we
observed a clear production of sulfate in the particle phase,
similar to the bulk experiments above (note that due to the low
surface-to-volume ratio, the loss of gaseous SO2 could not be
monitored in these experiments). In other words, we observed a
photosensitized sulfate production, which took place within the
condensed phase.
Triplet excited states are often considered as more significant

excited states in photochemistry compared to the singlet excited
states due to their longer lifetimes. Laser-flash illumination of
some selected photosensitizers, which are simultaneously
representative of those found in dissolved organic matter and
biomass burning plumes (including fires for residential

heating),13 in deoxygenated aqueous solutions led to the
production of the corresponding triplet state, whose decay was
monitored as a function of time21 to derive the corresponding
rate constant as a function of reactant concentration, pH, and so
on (as detailed below). First, the quenching rates of these triplet
states were observed to be highly pH-dependent in the absence
of added S(IV), with acetophenone and 4-BBA being quenched
faster under more acidic conditions, but with no obvious
influences on flavone and xanthone in this pH range (Figure 2A
and Figure S3). In addition to highlighting their pH dependence,
those trends are useful to discriminate which S(IV) species is
reactive with a given T*.

Figure S4 shows experiments being performed by adding
sodium sulfite (Na2SO3) into the deoxygenated aqueous
solutions, which redistributed into the other S(IV) compounds
depending on pH (their distribution in solution can be
calculated based on equilibrium eqs 1−3). All investigated
triplet states were efficiently quenched by the presence of
aqueous S(IV) species but exhibited different quenching rates
(see Figure 2B and 3). Figure 2B shows the quenching rates of
the triplet states in the presence of the same concentration of
S(IV) but at different pH values, that is, with a different
speciation between hydrated SO2 and HSO3

−. Taking into
account the trends shown in Figure 2A, these results indicate
that the triplet state of flavone is more reactive toward hydrated

Figure 2. pH influence on the quenching rates of the triplet states in the
(A) absence and (B) presence of S(IV). Red squares, acetophenone,
0.25mM sodium sulfite; black triangles, flavone, 0.1mM sodium sulfite;
blue circles, xanthone, 1 mM sodium sulfite; green diamonds, 4-BBA,
20 mM sodium sulfite. kobs* is the blank-corrected quenching rates,
which means here these values obtained from the triplet states being
quenched only by S(IV). It should be noted that here xanthone
concentrations were different from other xanthone experiments in this
study.
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SO2, while xanthone is more reactive toward HSO3
− (see Table

S1). However, the triplet states of acetophenone and 4-BBA
were quenched faster under more acidic solutions as they are
more reactive under acidic conditions (see Figure 2A) and also
probably more reactive toward hydrated SO2.
In the investigated pH range, both hydrated SO2 and HSO3

−

were quenching or reacting with T*. Figure 3 shows a Stern−
Volmer plot of the measured quenching rates under acidic
conditions where hydrated SO2 and HSO3

− are dominant. In
order to simplify the kinetics treatment, we assumed that both
S(IV) species are reacting at the same rate with the triplet state.
In such a simplified system, the observed quenching rate should
depend linearly on the total aqueous S(IV) concentration (see
Figure 3). The measured second-order rate constants were all in
an excess of 6 × 107 M−1 s−1, with 4-BBA being the slowest (6.9
× 107 M−1 s−1) and xanthone the fastest (1.0 × 109 M−1 s−1).
The extracts of the ambient filters from an authentic Chinese
haze event also showed a reactive triplet state and quenched by
S(IV) with a rate constant of 1.3 × 108 M−1 s−1 (see Figure 3).

■ DISCUSSION
These observations can only be explained by a direct reaction
between S(IV) species and the studied triplet states (T*) as the
organic photodissociation is not occurring under our exper-
imental conditions with well-defined photosensitizers. The
possible reaction pathways are listed below:

SO (aq) T SO T; energy transfer (a)

SO (aq) T SO T ; electron transfer to T (b)

SO (aq) T SO T ; electron transfer from T (c)

HSO T HSO T ; electron transfer to T (d)

HSO T SO HT ; hydrogen transfer to T (e)

2 2

2 2

2 2

3 3

3 3

+ * → * +

+ * → + *

+ * → + *

+ * → + *

+ * → + *

•+ •−

•− •+

− • •−

− •− •

All these initiation reactions produce sulfur-containing
transient compounds that will start chain reactions and decay
to sulfate. While we cannot, from our observations, be fully
conclusive on the exact reaction mechanism, one could still
discuss the plausibility of each pathway. Let us consider 4-BBA
as a model photosensitizer for which some information is known

(in contrast for instance to the authentic aerosol samples). The
energy of the triplet of 4-BBA (∼290 kJ mol−1)13 is slightly lower
than the triplet energy of SO2 (∼300 kJ mol−1),7 which cannot
lead to an efficient (if any) energy transfer in this case. However,
one cannot rule out that for higher triplet states, energy transfer
could lead to a significant yield of excited-state SO2 (pathway
(a)) that would then react more efficiently with water,
producing OH radicals and therefore leading to the observed
oxidation process.9 An electron transfer, either way, would
therefore be the prominent pathway. SO2 has a zwitterion
structure, where the sulfur is positively charged, which would
prevent any significant electron transfer from its electron lone
pairs. However, if produced through pathway (b), SO2

•+ might
react directly with water and initiate some further radical and
oxidative chemistry.22 Another possibility is an electron transfer
to SO2 producing SO2

•−. It was however not possible to observe
the transient spectra of SO2

•−, nor of the associated ketyl radical
produced in pathway (c), as the absorption of the radical anion
overlapped with that of the organic photosensitizer. SO2

•− has
been previously reported to be highly reactive in aqueous
solutions, undergoing several reaction pathways including
reactions with oxygen and typical S(IV) species, ending in the
production of sulfate.23−25 In addition, HSO3

− could also either
transfer the electron to T* producing HSO3

• (d) or a H-atom
producing SO3

•− (e), which could also continue to react with
oxygen and other S(IV) species to produce sulfate.23 This
reaction scheme would probably explain the measured
quenching rates.
While the exact pathway is uncertain, the reaction rates are

however established via the kinetics observations discussed
above. If we assume that the reaction between S(IV) and T* is
the rate-limiting step and the rate coefficient is pH-independent,
then one can derive the associated sulfate formation rates. The
pH independence arises from the assumption made that both
hydrated SO2 and HSO3

− have similar reactivities and that the
total aqueous S(IV) concentration can be used as a reasonable
proxy, leading to the linearity shown in Figure 3. Details about
these calculations are given in the Supporting Information. It
also should be noted that here particles were assumed to be
homogeneously mixed and in a liquid state. This chemistry
(reactions a−e) may then induce a significant S(IV) oxidation in
wet aerosols when both SO2 and particle phase photosensitizer,
such as HULIS,14 levels are high. Such conditions are typically
observed during Asian haze events, which combine high
humidity and significant anthropogenic emissions from
residential burning, with a contribution of up to 20 wt % during
haze events. By updating the scenario of Cheng et al.10 to take
into account high H2O2 levels recently reported,

26 we estimated
the sulfate formation rate associated with SO2 reacting with O3,
H2O2, TMIs, NO2, and T* (using 1.3 × 108 M−1 s−1 as obtained
from the authentic samples) (Figure 3). It should be noted again
that we assumed that the triplet states are reactive toward all
S(IV) species (hydrated SO2 and HSO3

−) and independent of
their actual pH speciation (eqs 1−3). To estimate the sulfate
formation rate under the scenario set by Cheng et al.,10 we do
need to estimate the particle phase concentration of triplet states
under steady-state haze daylight conditions. Clearly, the data
related to this quantity are very limited. For instance, Kaur et
al.27 reported very recently on such concentrations for some
cleaner conditions encountered in California but with large
uncertainty. Meanwhile, several studies investigated the amount
of singlet oxygen and its ratio to coexisting triplet states in the
range approximately 1,10 3,28 and 10−100,27 respectively.

Figure 3. Stern−Volmer plots of the observed quenching first-order
rate coefficients kobs as a function of aqueous S(IV) concentration. Red
squares, acetophenone; black triangles, flavone; blue circles, xanthone;
green diamonds, 4-BBA; pink stars, HULIS-AA. The pH of all
acetophenone solutions is 2.6, and the pH of all flavone, xanthone, 4-
BBA, and HULIS-AA solutions is 1.8.
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Altogether, this leads to estimated concentrations in the range
from 2.3 × 10−13 to 1.6 × 10−10 M.27 Using this range of
concentrations leads to the estimated sulfate production rates
shown in Figure 4. Overall, these results show that the

photosensitizing pathway could make a significant contribution
to the sulfate formation (Figure 4). In the pH range from 4 to 6,
which overlaps with the conditions of Chinese haze,29,30 the
sulfate production rates are in the range of 1.1 × 10−4 - 7.9 μg
m−3 h−1. This is a new finding that not only will help close gaps
between field observations and numerical models but also may
help in defining new regulations to reduce sulfate formation and
hence the harmful effects of these haze events. Overall, this study
also stresses the knowledge gap around particle phase
concentration of photosensitizing compounds and the associ-
ated quantum yield for triplet-state formation.
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