High pressure inside nanometre-sized particles influences the rate and products of chemical reactions

Matthieu Riva†,* Jianfeng Sun†§, V. Faye McNeill‖, Charline Ragon†, Sebastien Perrier†, Yinon Rudich⊥, Sergey A. Nizkorodov#, Jianmin Chen§, Frederic Caupin∇, Thorsten Hoffmann○, Christian George†,*

† Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France.
§ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
‖ Department of Chemical Engineering and Department of Earth and Environmental Sciences, Columbia University, New York, NY 10025 USA
⊥ Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot 76100, Israel.
Department of Chemistry, University of California, Irvine, CA 92694, USA.
∇ Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
○ Department of Chemistry, Johannes Gutenberg-Universität, Mainz, Germany.

Keywords: SOA, mass spectrometry, heterogeneous chemistry, pressure, new particle formation
Figure S1. Schematic of the experimental set-up used to probe the impact of pressure on atmospheric chemical reactions.
Figure S2. Absorbance of light-absorbing glyoxal reaction products at different pressures of reaction of 0.25 M; 0.5M; 1M and 2M glyoxal with 2 M AS, as function of reaction time (3, 6, 12, 18 and 24 hours).
Figure S3. Relative absorbance of light-absorbing glyoxal reaction products at different pressures of reaction of 0.25 M; 0.5M; 1M and 2M glyoxal with 2 M AS, as function of reaction time (3, 6, 12, 18 and 24 hours).
Figure S4. Absorption spectra of the reaction of glyoxal in 2 M ammonium sulphate solution after 24 hours, showing the formation of light absorbing compounds. The absorbance was retrieved by multiplying the signal intensity by the dilution factor.
Figure S4. First-order kinetic fit to the UV/Vis absorbance of light-absorbing glyoxal reaction products.