Supplemental Information: Application of UHPLC-ESI-MS/MS to Identify Free Radicals via Spin Trapping with BMPO

Lena Gerritz¹, Veronique Perraud¹, Kathryn M. Weber², Manabu Shiraiwa^{1*} & Sergey A. Nizkorodov^{1,*}

- 1. Department of Chemistry, University of California, Irvine, CA, USA
- 2. Department of Chemistry, University of Wisconsin, Madison, WI, USA

Summary: 9 supporting figures

Figure S1	S2
Figure S2	S 3
Figure S3	S4
Figure S4	S5
Figure S5	S 6
Figure S6	S 7
Figure S7	S 8
Figure S8	S 9
Figure S9	S 9

Figure S1: Positive ion mode mass spectrum of irradiated H_2O_2 and BMPO obtained by integration of the chromatogram over 1.6-16 min. A zoomed-in version of this mass spectrum is shown in Figure 4, along with assignments of the major peaks. Note that peaks corresponding to ¹³C isomers were removed during processing.

Figure S2: Positive ion mode mass spectrum of the products of OH oxidation of DMSO in the presence of 10 mM BMPO obtained by integration of the chromatogram over 1.6-16 min. A zoomed-in version of this mass spectrum is shown in Figure 6, along with assignments of the major peaks. Note that peaks corresponding to ¹³C isomers were removed during processing.

Figure S3: Fragmentation pathway for BMPO(CH₃)₂ di-adduct with proposed structures at each monoisotopic m/z.

Figure S4: Sum of the fragmentation mass spectra recorded at collision energies 10, 30, and 50 for $BMPO(CH_3)_2$ di-adduct in the form $[M-H]^+$ at retention time 8.1 min (panel A) and $[M+H]^+$ at retention times 14.1 min (panel B) and 14.6 min (panel C).

Figure S5: Sum of the fragmentation mass spectra recorded at collision energies 10, 30, and 50 for the oxidized $[M]^+$ BMPO(CH₃O) at retention time 10.4 min (panel A), $[M-H]^+$ ion of BMPO(OH)(CH₃) at 11.7 min (panel B), and either $[BMPO(CH_3O)+2H]^+$ or $[BMPO(OH)(CH_3)+H]^+$ at 10.6 min (panel C).

Figure S6: Sum of the fragmentation mass spectra recorded at collision energies 10, 30, and 50 for $[M]^+$ of BMPO(CH₃) at retention time 8.3 min (panel A) and the dehydration fragment of m/z 232.154 ([BMPO(CH₃O)+2H]⁺ or [BMPO(OH)(CH₃)+H]⁺) at 10.6 min (panel B).

Figure S7: Sum of the fragmentation mass spectra recorded at collision energies 10, 30, and 50 for m/z 232.118 (BMPO(OOH) and BMPO(OH)₂) at retention times 7.2 min (panel A), 7.8 min (panel B), 8.2 min (panel C), and 8.6 min (panel D).

Figure S8: Sum of the fragmentation mass spectra recorded at collision energies 10, 30, and 50 for m/z 202.144 [BMPO(H)+2H]⁺ at retention time 7.6 min.

Figure S9: Sum of the fragmentation mass spectra recorded at collision energies 10, 30, and 50 for $[BMPO(OH)]^+ m/z$ 216.123 at retention time 9.0 min.